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SUMMARY

The mechanisms that promote excitatory synapse
formation and maturation have been extensively
studied. However, the molecular events that limit
excitatory synapse development so that synapses
form at the right time and place and in the correct
numbers are less well understood. We have identi-
fied a RhoA guanine nucleotide exchange factor,
Ephexin5, which negatively regulates excitatory
synapse development until EphrinB binding to the
EphB receptor tyrosine kinase triggers Ephexin5
phosphorylation, ubiquitination, and degradation.
The degradation of Ephexin5 promotes EphB-
dependent excitatory synapse development and is
mediated byUbe3A, a ubiquitin ligase that ismutated
in the human cognitive disorder Angelman syndrome
and duplicated in some forms of Autism Spectrum
Disorders (ASDs). These findings suggest that
aberrant EphB/Ephexin5 signaling during the devel-
opment of synapses may contribute to the abnormal
cognitive function that occurs in Angelman syn-
drome and, possibly, ASDs.

INTRODUCTION

A crucial early step in the formation of excitatory synapses is the

physical interaction between the developing presynaptic

specialization and the postsynaptic dendrite (Jontes et al.,

2000; Ziv and Smith, 1996). This step in excitatory synapse

development is thought to be mediated by cell surface mem-

brane proteins expressed by the developing axon and dendrite

and appears to be independent of the release of the excitatory

neurotransmitter glutamate (reviewed in Dalva et al., 2007).

Several recent studies have revealed an important role for Ephrin

cell surface-associated ligands and Eph receptor tyrosine

kinases in this early cell-cell contact phase that is critical for

excitatory synapse formation (Dalva et al., 2000; Ethell et al.,
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2001; Henkemeyer et al., 2003; Kayser et al., 2006; Kayser

et al., 2008; Lai and Ip, 2009; Murai et al., 2003). Ephs can be

divided into two classes, EphA and EphB, based on their ability

to bind the ligands EphrinA and EphrinB, respectively (reviewed

in Flanagan and Vanderhaeghen, 1998). EphBs are expressed

postsynaptically on the surface of developing dendrites, while

their cognate ligands, the EphrinBs, are expressed on both the

developing axon and dendrite (Grunwald et al., 2004; Grunwald

et al., 2001; Lim et al., 2008). When an EphrinB encounters an

EphB on the developing dendrite, EphB becomes autophos-

phorylated, thus increasing its catalytic kinase activity (reviewed

in Flanagan and Vanderhaeghen, 1998). This leads to a cascade

of signaling events including the activation of guanine nucleotide

exchange factors (GEFs) Tiam, Kalirin, and Intersectin, culmi-

nating in actin cytoskeleton remodeling that is critical for excit-

atory synapse development (reviewed in Klein, 2009). Consistent

with a role for EphBs in excitatory synapse development, EphB1/

EphB2/EphB3 triple knockout mice have fewer mature excit-

atory synapses in vivo in the cortex, and hippocampus (Henke-

meyer et al., 2003; Kayser et al., 2006). In addition, the disruption

of EphB function postsynaptically in dissociated hippocampal

neurons leads to defects in spinemorphogenesis and a decrease

in excitatory synapse number (Ethell et al., 2001; Kayser et al.,

2006). Conversely, activation of EphBs in hippocampal neurons

leads to an increase in the number of dendritic spines and

functional excitatory synapses (Henkemeyer et al., 2003; Penzes

et al., 2003).These findings indicate that EphBs are positive

regulators of excitatory synapse development.

While there has been considerable progress in characterizing

the mechanisms by which EphBs promote excitatory synapse

development, it is not known if there are EphB-associated

factors that restrict the timing and extent of excitatory synapse

development.We hypothesized that neuronsmight have evolved

mechanisms which act as checkpoints to restrict EphB-medi-

ated synapse formation, and that the release from such synapse

formation checkpoints might be required if synapses are to form

at the correct time and place and in appropriate numbers.

We considered the possibility that likely candidates tomediate

the EphB-dependent restriction of excitatory synapse formation

might be regulators of RhoA, a small G protein that functions to
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Figure 1. Ephexin5 Interacts with EphB2

(A) E5 and EphB2 are expressed in the CA1 region and dentate gyrus (DG) of

the hippocampus at P12. Adjacent 14 mm mouse brain sections were stained

for E5 or EphB2 using digoxigenin-labeled RNA probes to the antisense strand

or sense strand as a control (top). Lower panels show nuclear staining with

DAPI.

(B) Immunoprecipitation with a-Flag from 293 cell lysates previously trans-

fected with various combinations of overexpressing plasmids containing

E1-Myc, E5-Myc, Flag-EphB2, and/or Flag-EphA4, followed by immunoblot-

ting with a-Myc or a-Flag. Input protein levels are shown (bottom).

(C) Immunoprecipitation of mouse cortical lysates with IgG or a-C-E5, followed

by immunoblotting with a-EphB2 or a-N-E5 (left). Input protein levels are

shown (right).

(D) Immunoprecipitation of WT or E5�/� mouse cortical culture lysates with

a-C-E5 followed by immunoblotting with a-EphB2. Input EphB2 levels are

shown (bottom).

(E) Dissociated rat hippocampal neurons were stained using a-N-E5 (Blue) and

a-EphB2 (Red). A representative image of overlapped EphB2 and E5 is shown

(left). White rectangle outlines magnified dendritic region (right) showing

examples of EphB2/E5 colocalization (arrows). In three independent experi-

ments, quantification of overlapped EphB2/E5 puncta was determined at

DIV2, DIV4 and DIV8 and is represented as percent of EphB2 overlapped

with E5 (right). Error bars ± SEM; *p < 0.05, nonsignificant (n.s.).

See also Figure S1.
antagonize the effects of Rac (Tashiro et al., 2000). In previous

studies we identified a RhoAGEF, Ephexin1 (E1), which interacts

with EphA4 (Fu et al., 2007; Sahin et al., 2005; Shamah et al.,

2001). E1 is phosphorylated by EphA4 and is required for the

EphrinA-dependent retraction of axonal growth cones and

dendritic spines (Fu et al., 2007; Sahin et al., 2005). While E1

does not appear to interact with EphB, E1 is amember of a family

of five closely related GEFs. Of these GEFs, Ephexin5 (E5) (in

addition to E1) is highly expressed in the nervous system. There-

fore, we hypothesized that E5 might function to restrict the

EphB-dependent development of excitatory synapses by

activating RhoA.

In this study we report that EphB interacts with E5, that E5

suppresses excitatory synapse development by activating

RhoA, and that this suppression is relieved by EphrinB activation

of EphB during synapse development. Upon binding EphrinB,

EphB catalyzes the tyrosine phosphorylation of E5 which trig-

gers E5 degradation. We identify Ube3A as the ubiquitin ligase

that mediates E5 degradation, thus allowing synapse formation

to proceed. As Ube3A is mutated in Angelman syndrome and

duplicated in some forms of Autism Spectrum Disorders

(ASDs), these findings suggest a possible mechanism by which

themutation of Ube3Amight lead to cognitive dysfunction (Jiang

et al., 1998; Kishino et al., 1997). Specifically, we provide

evidence that in the absence of Ube3A, the level of E5 is elevated

and propose that this may lead to the enhanced suppression of

EphB-mediated excitatory synapse formation, thereby contrib-

uting to Angelman syndrome.

RESULTS

Ephexin5 Interacts with EphB2
To identify mechanisms that restrict the ability of EphBs to

promote an increase in excitatory synapse number, we searched

for guanine nucleotide exchange factors (GEFs) that specifically

activate RhoA signaling, are expressed in the same population of

neurons that express EphB, are expressed at the same time

during development as EphB, and interact with EphB. Struc-

ture-function studies of GEFs identified amino acid residues in

the activation domain of Rho family GEFs that specifically iden-

tify the GEFs as activators of RhoA rather than Rac or Cdc42.

Applying this criterion, fourteen GEFs were identified that specif-

ically activate RhoA (Rossman et al., 2005). Of these GEFs we

found by in situ hybridization that E5 has a similar expression

pattern to EphB in the hippocampus (Figure 1A). These findings

raised the possibility that E5might mediate the effect of EphB on

developing synapses.

We asked if E5 interacts physically with EphB. We transfected

HEK293T (293) cells with plasmids encodingMyc-tagged E5, E1,

or a vector control together with Flag-tagged EphB2 or EphA4

and asked if these proteins coimmunoprecipitate. Extracts

were prepared from the transfected 293 cells and EphA4 or

EphB2 immunoprecipitated with Flag antibodies. The immuno-

precipitates were subjected to SDS polyacrylamide gel electro-

phoresis (SDS-PAGE) and blotted with anti-Myc antibody

(a-Myc). We found that E5 coimmunoprecipitates with EphB2

but not with EphA4 (Figure 1B). The relatively weak E5 interaction

with EphA4 is consistent with published experiments (Ogita
Cell 143, 442–455, October 29, 2010 ª2010 Elsevier Inc. 443



et al., 2003). By contrast, E1 is coimmunoprecipitated by EphA4

but not EphB2 (Shamah et al., 2001). These findings suggest that

E5 interacts preferentially with EphB2.

To extend this analysis we investigated whether EphB2

interacts with E5 in neurons. Neurons from embryonic day 16

(E16) mouse brains were lysed in RIPA buffer and the lysates

incubated with affinity purified anti-C-terminal E5 (a-C-E5) or

control (IgG) antibodies. The immunoprecipitates were then

resolved by SDS-PAGE and immunoblotted with affinity purified

anti-N-terminal E5 (a-N-E5) or EphB2 (a-EphB2) antibodies

(Figure 1C). This analysis revealed that endogenous, neuronal

EphB2 is immunoprecipitated by a-C-E5 but not IgG. Moreover,

using lysates from cortical cultures of wild-type or E5 knockout

mice (E5�/�, see Figure S1 available online), we find that

a-C-E5 immunoprecipitates EphB2 only from lysates when E5

is present (Figure 1D). Taken together, these findings suggest

that EphB interacts with Ephexin5 in neurons.

As an independent means of assessing if EphB and E5 interact

with one another, we used immunofluorescence microscopy to

determine if these two proteins colocalize in neurons. Cultured

mouse hippocampal neurons were transfected with a plasmid

expressing green fluorescent protein (GFP). The GFP-express-

ing neurons were imaged and quantified for the colocalization

of EphB2 and E5 puncta by staining with a-C-E5 and a-EphB2.

This analysis revealed that EphB2 and E5 colocalize along

dendrites (Figure 1E). We find that 40% of EphB staining over-

laps with a-C-E5 staining early during the development of

excitatory synapses. After eight days in vitro (DIV) the overlap

of EphB with E5 within neuronal dendrites decreases to below

the level that would be detected by random chance. This change

suggests that EphB interacts with E5 early during development

but that these two proteinsmay not interact later in development.

Ephexin5 Is a Guanine Nucleotide Exchange Factor
that Activates RhoA
To determine if E5 activates RhoA, we transfected 293 cells with

a control plasmid or a plasmid that drives the expression of

Myc-tagged mouse E5. We prepared extracts from the trans-

fected cells and incubated the extracts with aGST-fusion protein

that includes the Rhotekin-Binding Domain (GST-RBD), a protein

domain that selectively interacts with active (GTP-bound) but not

inactive (GDP-bound) RhoA. Following SDS-PAGE of the

proteins in the extract that bind to GST-RBD, RhoA binding to

GST-RBD was measured by immunoblotting with a-RhoA anti-

bodies.We found that cells expressing E5 exhibited higher levels

of activated RhoA compared to cells transfected with a control

plasmid, indicating that E5 activates RhoA (Figure 2A).

When a similar series of experiments were performed using

a GST-fusion Pak-Binding Domain (GST-PBD) which specifically

interacts with active forms of two other Rho GTPases, Rac1 and

Cdc42, we found that E5 does not induce the binding of

GST-PBD to Rac1 or Cdc42. In contrast, E1-expressing cells

displayed enhanced binding of Rac1 and Cdc42 to GST-PBD.

We conclude that E5 activates RhoA but not Rac1 or Cdc42

(Figure S2A).

To determine whether E5 activation of RhoA requires the GEF

activity of E5, we generated a mutant form of E5 in which its GEF

activity is impaired. To identify the residues required for
444 Cell 143, 442–455, October 29, 2010 ª2010 Elsevier Inc.
Ephexin5 guanine nucleotide exchange activity we compared

its Dbl-homology (DH) domain to the DH domain of other

RhoA-specific GEFs (Snyder et al., 2002). We identified within

the a5 helix of E5’s DH domain three amino acids that are

conserved in other GEFs that, like E5, activate RhoA but not

Rac1 and Cdc42 (Figure S2B). To generate a form of E5 pre-

dicted to be inactive as a GEF, we mutated these three

conserved amino acids (L562, Q566, and R567) to alanine

(E5-LQR). Using the GST-RBD pull-down assay we found that

although E5-WT and E5-LQR are expressed at similar levels,

the E5-LQR mutant is significantly impaired relative to WT in its

ability to activate RhoA (Figure 2B). As a control, we mutated

other conserved residues within the a5 DH region to alanine

(Q547, S548, R555, and L556). When we tested this mutant we

observed no defect in RhoA activation, suggesting that the

E5-LQR mutation specifically disrupts the GEF activity of E5

and that the inability of the LQR mutant to activate RhoA is not

a general consequence of disrupting the a5 region of Ephexin5

(Figure S2C). Taken together, these findings indicate that E5

requires an intact conserved GEF domain to promote RhoA

activity in 293 cells, suggesting that E5 functions as a RhoAGEF.

We next asked if E5 expression affects RhoA activity in the

brain. We lysed P3 whole brains from wild-type or E5�/� mice

and performed a GST-RBD pull-down assay. This analysis re-

vealed a significant decrease in RhoA activation in brain extracts

from E5�/�mice compared towild-typemice, suggesting that E5

is required to maintain wild-type levels of RhoA activity in the

brain (Figure 2C).

Ephexin5 Negatively Regulates Excitatory
Synapse Number
Our findings indicate that E5 interacts with EphB, a key regulator

of excitatory synapse development. Thus, we asked whether E5

plays a role in the development of excitatory synapses. We

generated two short hairpin RNA constructs that each knocks

down E5 protein levels when expressed in 293 cells or cultured

hippocampal neurons (Figures S3A–S3B). These shRNAs were

introduced into cultured hippocampal neurons together with a

plasmid that drives expression of green fluorescent protein

(GFP) to allow detection of the transfected cells. We found by

staining with a-N-E5 antibodies that the E5 shRNAs (E5-shRNA),

but not scrambled hairpin control shRNAs (ctrl-shRNA), effi-

ciently knocked down E5 expression in the transfected neurons

(Figure S3C).

By staining with antibodies that recognize pre- and postsyn-

aptic proteins or by visualizing dendritic spines in GFP trans-

fected neurons we observed a significant increase in the number

of excitatory synapses and dendritic spines that are present on

the E5-shRNA-expressing neurons compared to neurons ex-

pressing ctrl-shRNAs (Figures 3A and 3B). By contrast, we failed

to detect a significant change in dendritic spine length or width

under these conditions (Figure S3D). These findings suggest

that E5 functions to restrict spine/excitatory synapse number

but has no significant effect on spine morphology. Consistent

with these conclusions, we found that overexpression of E5 in

hippocampal neurons leads to a decrease in the number of excit-

atory synapses that are present on the E5-overexpressing

neurons (Figure 3C). This ability of E5 to negatively regulate
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Figure 2. Ephexin5 Is a GEF that Activates RhoA

(A) Lysates from 293 cells transfected with empty vector (Ctrl) or E5-Myc

overexpressing vector (WT) were assayed for endogenous RhoA activity using

the RBD pull-down assay and analyzed by immunoblotting with an antibody to

RhoA (top). GTPgS lane is a positive control for inducing RhoA activity.

Increased endogenous RhoA activity is demonstrated by presence of

a-RhoA signal in RBD pull-down lanes. Input protein levels and a-Actin loading

control are shown (bottom).

(B) Lysates from 293 cells transfected with empty vector (Ctrl), E5-Myc (WT) or

LQRmutant of E5-Myc (LQR) were assessed for RhoA activity as measured by

RBD assay described in (A). Input protein levels and a-Actin loading control are

shown (bottom).

(C) Presence of E5 is critical for wild-type levels of endogenous RhoA signaling

in vivo. P3 mouse whole brain lysates from WT or E5�/� (KO) littermates were

subjected to RBD pull-down assays as described in (A). A representative

immunoblot is shown (top). From three experiments, blinded to condition,

the quantification of a-RhoA signal in the RBD pull-down assay was normal-

ized to input RhoA signal (bottom). Error bars indicate ± SEM; *p < 0.05.

See also Figure S2.
excitatory synapse number requires its RhoA GEF activity, as

overexpression of E5-LQR had no effect on synapse number

(Figure 3D).

To assess the effect of reducing E5 levels on the functional

properties of excitatory synapses, we recorded miniature excit-

atory postsynaptic currents (mEPSCs) from cultured hippo-

campal neurons transfected with E5-shRNA or ctrl-shRNA. We

observed an increase in the frequency and amplitude ofmEPSCs

on neurons expressing E5-shRNA compared to ctrl-shRNA

(Figure 3E). This suggests that E5 acts postsynaptically to restrict

excitatory synapse function. The increase in mEPSC frequency

could be due to an increase in presynaptic vesicle release onto

the transfected neuron or an increase in the number of excitatory

synapses that are present on the transfected neuron. We favor

the latter possibility since our transfection protocol selectively

reduces E5 levels postsynaptically and also because an increase

in synapse number would bemost consistent with the increase in

costaining of pre- and postsynaptic markers that we observe

when the level of E5 is reduced. The possibility that E5 functions

postsynaptically is further supported by immunofluorescence

staining experiments demonstrating that E5 is enriched in

dendrites relative to axons (Figure S1F).

As an independentmeans of assessing the importance of E5 in

the control of excitatory synapse number, we cultured hippo-

campal neurons from E5�/� mice or their wild-type littermates

for 10 days in vitro and then, following transfection of a GFP-ex-

pressing plasmid into these neurons, quantified the number of

excitatory synapses present on the transfected neuron at

DIV14. We observed a three-fold increase in the number of

synapses that are present on E5�/� neurons compared to E5+/�

neurons (Figure 4A). Taken together with the E5-shRNA knock-

down and E5 overexpression analyses, these findings suggest

that E5 acts postsynaptically to reduce excitatory synapse

number.

We next asked if E5 regulates synapse number in the context

of an intact developing neuronal circuit using conditional E5

(E5fl/fl) animals (see Figure S1). Upon introduction of Cre recom-

binase into E5fl/fl cells, exons 4–8 of the E5 gene are excised

resulting in a cell that no longer produces E5 protein (data not
Cell 143, 442–455, October 29, 2010 ª2010 Elsevier Inc. 445
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Figure 3. Ephexin5 Negatively Regulates Excitatory Synapse Number

(A) 10 ng of E5-shRNA or Ctrl-shRNAwas cotransfected with GFP into rat hippocampal neurons at DIV14. At DIV18 dendritic spines were measured as described

in methods. Representative image illustrates dendritic spines. N indicates number of neurons assessed. Error bars indicate ± SEM; **p < 0.01, ANOVA.

(B) 10 ng or 20 ng of two different E5-shRNA or Ctrl-shRNA constructs were cotransfected with GFP into rat hippocampal neurons at DIV10. At DIV14 excitatory

synapses were measured as described in methods. Representative image illustrates quantified synapse puncta (white). Error bars indicate ± SEM; **p < 0.01,

***p < 0.005, ANOVA.

(C) DIV10 rat hippocampal neurons were cotransfected with GFP and increasing concentrations of E5-Myc or control plasmid. At DIV 14 excitatory synapses

(gray bars) and exogenous E5 expression (blue bars) were measured as described in methods. Representative image illustrates localization of E5-Myc on

transfected neuron (red). Error bars indicate ± SEM; **p < 0.01, ANOVA.

(D) Neurons were transfected with E5-Myc (E5-WT) or E5-LQR-Myc (E5-LQR) and quantified as in (C). Error bars indicate ± SEM; **p < 0.01, ANOVA.

(E) Quantification ofmEPSC inter-event interval and amplitude from hippocampal neurons transfected as in (B) with 20 ng of shRNA. Cumulative distribution plots,

bar graphs and representative traces are shown. Error bars represent the standard deviation of the mean, ***p < 0.005, *p < 0.05.

See also Figure S3 and Figure S1.
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shown). Organotypic slices were prepared from the hippo-

campus of the E5fl/fl mice or their wild-type littermates. Using

the biolistic transfection method, a plasmid expressing Cre re-

combinase was introduced into a low percentage of neurons in

the slices. We found that introduction of a Cre-expressing

plasmid into E5fl/fl neurons in the hippocampal slice led to a

significant increase in the density of dendritic spines present

on the Cre-expressing neurons relative to wild-type hippo-

campal slices transfected with Cre (Figure 4B). The length and

width of dendritic spines analyzed in these experiments showed

no significant difference between wild-type and E5�/� neurons

(Figure S4). Thus, elimination of E5 expression in neurons in

the context of an intact neuronal circuit leads to an increase in

the number of dendritic spines.

To assess the role of E5 in hippocampal circuit development

in vivo, we performed acute slice physiology experiments in

the CA1 region of the hippocampus from wild-type or E5�/�

mice. We find that relative to wild-type neurons, in E5�/� CA1

pyramidal neurons there are more frequent excitatory events

that have larger amplitude (Figure 4C). A possible explanation

for these findings is that when E5 function is disrupted during

in vivo development more excitatory synapses form resulting in

more excitatory postsynaptic events. To test this possibility,

we used array tomography to quantify the number of excitatory

synapses that form in the CA1 stratum radiatum of wild-type

and E5�/� mice. We observed a �2-fold increase in the number

of excitatory synapses within the CA1 region of the E5�/� hippo-

campus compared to wild-type mice (Figure 4D). Specifically,

the number of juxtaposed synapsin and PSD-95 puncta was

quantified and considered a measurement of the number of

excitatory synapses that formwithin the CA1 region of the hippo-

campus in vivo. This analysis revealed a significant increase in

the number of PSD-95 puncta but no change in the number of

synapsin puncta density (Figure 4D). This suggests that the

increase in excitatory synapse number in the stratum radiatum

of E5�/� mice is likely due to the absence of E5 postsynaptically

and that when E5 is present within dendrites it functions to nega-

tively regulate synapse number in vivo. On the basis of these

results, we conclude that a key function of E5 is to restrict excit-

atory synapse number during the development of neuronal

circuits.

Ephexin5 Restricts EphB2 Control of Excitatory
Synapse Formation
We next considered the possibility that the ability of E5 to

restrict excitatory synapse number might be controlled by

EphB2 signaling. To test this idea, we asked whether reducing

EphB2 signaling eliminates the increase in excitatory synapse

number detected when E5 levels are knocked down by expres-

sion of E5-shRNA. To block EphB2 activation, we introduced

into neurons a kinase dead version of EphB2 (EphB2-KD) which

has been previously shown to block EphB2 signaling (Dalva

et al., 2000). As described above, expression of E5-shRNA in

neurons leads to a significant increase in the number of

synapses that are present on the E5-shRNA-expressing neuron.

However, this increase was reversed if the E5-shRNA was

cotransfected with a plasmid that drives expression of EphB2-

KD, but was not affected by cotransfection of a control plasmid
(Figure 4E). These findings suggest that the increase in excit-

atory synapse number that occurs when E5 levels are reduced

requires EphB signaling. Consistent with this conclusion, we

find that if we overexpress wild-type EphB2 in neurons more

synapses are present on the EphB-expressing neuron.

However, this effect is reduced if E5 is overexpressed in

neurons together with EphB (Figure 4F). It is possible that the

ability of overexpressed E5 to suppress the synapse-promoting

effect of EphB2 reflects independent actions of these two

signaling molecules. However, given that EphB2 and E5 interact

with one another in neurons, the most likely interpretation of

these results is that E5 functions directly to restrict the

synapse-promoting effects of EphB2. If this were the case, we

would predict that for EphB2 to positively regulate excitatory

synapse development it would be necessary to inactivate and/

or degrade E5.
EphB Mediates Phosphorylation of Ephexin5
at Tyrosine-361
We considered the possibility that since EphB2 is a tyrosine

kinase it might inhibit the GEF activity or expression of the E5

protein by catalyzing the tyrosine phosphorylation of E5. In sup-

port of this possibility, stimulation of dissociated mouse hippo-

campal neurons with EphrinB1 (EB1) for 15 min led to an

increase in the level of E5 tyrosine phosphorylation as detected

by probing immunoprecipitated E5 with the pan-anti-phospho-

tyrosine antibody, 4G10 (Figure 5A).

We have previously shown that EphrinA1 stimulation of

cultured neurons leads to the tyrosine phosphorylation of E1 at

tyrosine 87 (Sahin et al., 2005). On the basis of this finding we

hypothesized that exposure of neurons to EB1 might promote

the phosphorylation of the analogous tyrosine residue (Y361)

on E5 (Figure 5B) and that phosphorylation at this site might

lead to E5 inactivation. To address this possibility, we overex-

pressed EphB2 in 293 cells together with wild-type E5 or

amutant formof E5 inwhichY361 is converted to a phenylalanine

(E5-Y361F). Lysates were prepared from the transfected cells

and after SDS-PAGEwere immunoblottedwith 4G10 (Figure 5C).

We found that in the presence of EphB2, E5-WT, but not

E5-Y361F, becomes tyrosine phosphorylated. These findings

suggest that EphB2 catalyzes the tyrosine phosphorylation of

E5 primarily at Y361.

To show definitively that E5 Y361 is tyrosine phosphorylated,

we generated an E5 phospho-Y361 antibody (a-pY361). To

demonstrate that this antibody specifically recognizes the

Y361-phosphorylated form of E5, we immunoblotted cell lysates

prepared from 293 cells that express EphB2 and either E5-WT or

E5-Y361F with a-pY361. This analysis demonstrated that

a-pY361 bind to wild-type E5 but not E5-Y361F (Figure 5C).

Furthermore, using a-pY361 we found that when wild-type

EphB2, but not a kinase dead or cytoplasmic truncated version

of EphB2, is expressed in 293 cells together with E5, E5

becomes phosphorylated at Y361 (Figure S5A). In contrast,

when EphA4 or EphA2 were expressed in 293 cells we detected

little to no phosphorylation of E5 at Y361 (Figure S5B). These

findings suggest that EphB2, but not EphAs, promote E5 Y361

phosphorylation (pY361).
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Figure 4. Ephexin5 Restricts EphB2 Control of Excitatory Synapse Formation

(A) E16 hippocampi from E5+/� or E5�/� mice were dissected and dissociated for culture. At DIV10 dissociated neurons were transfected with GFP. At DIV14

neurons were fixed, stained, and excitatory synapses were measured as described in methods. Error bars indicate ± SEM; ***p < 0.005, ANOVA.

(B) Organotypic slices from WT or E5fl/fl mice were biolistically transfected with Cre-recombinase (Cre) and dendritic spines were quantified as described in

methods. Representative images are shown (left). Error bars indicate ± SEM; ***p < 0.005, KS test.

(C) Quantification of mEPSC inter-event interval and amplitude from acute hippocampal brain slices prepared from P12-P14WT or E5�/� mice. Error bars repre-

sent the standard deviation of the mean; ***p < 0.005, *p < 0.05.

(D) Hippocampi from three independent littermate pairs consisting of P12 WT and E5�/� mice were prepared as described in methods for quantification of

synapses, Synapsin1 and PSD-95 using array tomography. Error bars ± SEM; *p < 0.05, Mann-Whitney U-Test.

(E) Increase in excitatory synapse number following loss of E5 requires EphB2 signaling. At DIV10, control plasmid (�) or EphB2KD plasmid (+) were coexpressed

in dissociated mouse hippocampal neurons with GFP and either Ctrl-shRNA or E5-shRNA. At DIV14 excitatory synapses were measured as described in

methods. Error bars indicate ± SEM; **p < 0.01, ***p < 0.005, ANOVA.
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We also found by immunoblotting with a-pY361 that E5

is phosphorylated at Y361 in the hippocampus of wild-type but

not E5�/�mice (Figure S5C), and that EB1 stimulation of cultured

hippocampal neurons leads to E5 Y361 phosphorylation (Fig-

ure 5D). By immunofluorescence microscopy we detect

punctate a-pY361 staining along the dendrites of EB1-treated

wild-type neurons, but less staining in untreated neurons (Fig-

ure 5E). This result suggests that E5 becomes newly phosphor-

ylated at Y361 upon exposure of hippocampal neurons to EB1.

EphB2-Mediated Degradation of Ephexin5
Is Kinase- and Proteasome Dependent
We asked if EB1 stimulation of E5 Y361 phosphorylation leads

to a change in E5 activity or expression. To investigate this

possibility we asked if EphB suppresses E5-dependent RhoA

activation in a phosphorylation-dependent manner. We trans-

fected 293 cells with E5 in the presence or absence of EphB2

and measured RhoA activity using the RBD pull-down assay

(Figure 5F). We found that E5-dependent RhoA activation was

reduced in 293 cells expressing EphB2 and E5 compared to cells

expressing E5 alone. These findings are consistent with the

possibility that EphB2-mediated tyrosine phosphorylation of E5

either leads to a suppression of E5’s ability to activate RhoA,

or alternatively might trigger a decrease in E5 protein expression

resulting in a decrease in RhoA activation. We found this latter

possibility to be the case (Figure 5F, E5 loading control). Further-

more, when we compared lysates from the brains of wild-type or

EphB2�/�mice, we observed that E5 phosphorylation at Y361 is

decreased while the levels of E5 expression are increased in the

lysates from EphB2�/�mice (Figure 5G). These data suggest that

EphB2 functions to phosphorylate and degrade E5.

Consistent with the idea that E5 expression is destabilized in

the presence of EphB, we observed that in the dendrites of

cultured hippocampal neurons overexpressing EphB2, endoge-

nous E5 expression levels are reduced compared to control

transfected neurons or neurons transfected with a kinase dead

version of EphB2 (Figures S6A and S6B). When neurons were

exposed to EB1 compared to EA1 for 60min, we found by immu-

noblotting of neuronal extracts, or immunofluorescence staining

with a-N-E5, that exposure to EB1 leads to a decrease in E5

expression (Figure 6A). The lack of complete loss of E5 expres-

sion by Western blot may be due to the fact that EB1 stimulation

leads to dendritic and not somatic loss of E5 expression. More-

over, immunofluorescence staining revealed a loss of E5 puncta

specifically within the dendrites of EB1-stimulated neurons,

consistent with the possibility that EB1/EphB-mediated degra-

dation of E5 relieves an inhibitory constraint that suppresses

excitatory synapse formation on dendrites (Figure 6A). In support

of this idea, we find by immunoblotting of extracts from mouse

hippocampi that endogenous E5 protein levels are highest at

postnatal day 3 prior to the time of maximal synapse formation

and then decrease as synapse formation peaks in the postnatal

period (Figure S6C). Northern blotting revealed that this
(F) E5 can suppress an EphB2-mediated increase in excitatory synapse numbe

pressed in dissociated mouse hippocampal neurons with GFP and either control (

as described in methods. Error bars indicate ± SEM; **p < 0.01, ***p < 0.005, AN

See also Figure S4 and Figure S1.
decrease in E5 protein is not due to a change in the level of E5

mRNA expression (Figure S6C). Given that E5 protein levels

decrease dramatically during the time period P7-P21 when

synapse formation is maximal, these findings suggest that E5

may need to be degraded prior to synapse formation.

We asked whether EphB-mediated degradation of E5 could be

reconstituted in heterologous cells. When EphB and Myc-tagged

E5 were coexpressed in 293 cells we observed a significant

decrease in E5 protein expression in the presence of EphB2

(Figure 6B). The presence of EphB2 had no effect on the level of

expression of a related GEF, E1 (Figure 6B). We asked whether

EphB-mediated degradation of E5 depends upon Y361 phos-

phorylation. We found that in 293 cells overexpressing Myc-

tagged E5, the coexpression of EphB2, but not EphB2-KD,

resulted in a significant decrease in E5 levels (Figure 6C). This

suggests that EphB tyrosine kinase activity is required for E5

degradation. The EphB-mediated reduction in E5 levels is depen-

dent onY361phosphorylation, asEphB2expressionhadnoeffect

on the level ofE5Y361Fexpression (Figure 6D). This suggests that

the phosphorylation of E5 at Y361 triggers E5 degradation.

We considered the possibility that the Y361 phosphorylation-

dependent decrease in E5 protein levels might be due to

EphB-dependent stimulation of E5 proteasomal degradation.

Consistent with this possibility we found that addition of the

proteasome inhibitor lactacystin to 293 cells leads to a reversal

of the EphB-dependent decrease in E5 protein levels, as

measured by an increase in total ubiquitinated E5 (Figure S6D).

In addition, in neuronal cultures the EB1 induced decrease in

E5 protein expression is blocked if the proteasome inhibitor lac-

tacystin is added prior to EB1 addition (Figure 6E). Notably, in the

presence of lactacystin, E5 is ubiquitinated, further supporting

the idea that E5 is degraded by the proteasome.

To test whether E5 is ubiquitinated in the brain, we incubated

wild-type or E5�/�brain lysates with a-C-E5 and after immuno-

precipitation and SDS-PAGE, probed with a-ubiquitin anti-

bodies. This analysis detected the presence of ubiquitinated

species in a-C-E5 immunoprecipitates prepared from wild-type

but not E5�/� brain lysates (Figure 6F). These findings indicate

that E5 is ubiquitinated in the brain.

EphB2-Mediated Degradation of Ephexin5
Requires Ube3A
During proteasome-dependent degradation of proteins, speci-

ficity is conferred by E3 ligases or E2 conjugating enzymes

that recognize the substrate to be degraded. The E3 ligase binds

to the substrate and catalyzes the addition of polyubiquitin side

chains to the substrate thereby promoting degradation via the

proteasome (Hershko and Ciechanover, 1998). We considered

several E3 ligases that have recently been implicated in synapse

development as candidates that catalyze E5 degradation. One of

these E3 ligases, Cbl-b, has previously been implicated in the

degradation of EphAs and EphBs (Fasen et al., 2008; Sharfe

et al., 2003). A second E3 ligase, Ube3A, has been shown to
r. At DIV10, control plasmid (�) or EphB2-expressing plasmid (+) were coex-

Ctrl) plasmid or E5-Myc plasmid. At DIV14 excitatory synapses were measured

OVA.
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Figure 5. EphB2 Mediates Phosphorylation of Ephexin5 at Tyrosine-361

(A) Dissociated mouse hippocampal neurons were stimulated with either a -Fc IgG (Ctrl) or preclustered Fc-EB1 for 15 min. Neuronal lysates were immunopre-

cipitated with a-N-E5, followed by immunoblotting for panphosphotyrosine (a-pTyr) or E5 with a-N-E5. EB1 stimulation was determined by immunoblotting

neuronal lysates for phospho-Eph (pEph). Input protein levels and a-Actin loading control are shown (bottom).

(B) E5-Y361 is a conserved residue with E1-Y87 (Sahin et al., 2005).

(C) Immunoprecipitation with a-Myc from 293 cell lysates previously transfected with various combinations of overexpressing plasmids containing E5-Myc, E5

(Y361F)-Myc and/or EphB2-Flag, followed by immunoblotting with a-pTyr, a-Myc, a-pY361 or a-Flag. Input EphB2 levels are shown (bottom).

(D) Neurons were treated and lysates prepared as in panel (A) followed by immunoblotting with a-pY361 or a-N-E5. Representative immunoblot with input phos-

pho-Eph (pEph) levels is shown (top). Quantification of three independent experiments is shown as a percent increase in pY361 over Ctrl stimulation (bottom).

Error bars indicate ± SEM; *p < 0.05.

(E) Dissociated rat hippocampal neurons were transfected with GFP (gray) and stimulated as in panel (A), followed by fixing and staining for endogenous phos-

phorylated E5 using a-pY361 (Red). Representative image shown (left). White rectangle outlines magnified dendritic region showing examples of phospho-E5

staining (left bottom). Four independent experiments were imaged and analyzed for pY361 (bar graph). Error bars indicate ± SEM; *p < 0.05.

(F) Lysates from 293 cells transfected with empty vector (-) or increasing concentrations of E5-Myc with or without Flag-EphB2 were assessed for endogenous

RhoA activity by RBD assay (previously described). GTPgS lane is a positive control for inducing RhoA. Input protein levels and a-Actin loading control are shown

(bottom).

(G) WT and EphB2�/� (B2�/�) brain lysates were immunoblotted with a-EphB2, a-N-E5, a-Actin, or a-pY361 according to methods (left). Quantification of a-N-E5

or a-pY361 signal from three independent experiments is normalized to a-Actin and represented as fold change compared to wild-type. Error bars indicate ±

SEM; *p < 0.05.

See also Figure S5.
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Figure 6. EphB2-Mediated Degradation of Ephexin5 Is Kinase- and

Proteasome Dependent

(A) Dissociatedmousehippocampal neuronswere incubatedwith preclustered

Fc, Fc-EB1 or Fc-EA1 for 60 min, lysed, and immunoprecipitated with a-C-E5

followed by immunoblotting with a-N-E5. Immunoblot of input with a-pEph or

a-Actin (loading control) are shown. Western is one representative image, and

quantification is of three separate experiments with samples normalized to

a-Actin (left). Error bars indicate ± SEM; *p < 0.05. Right, dissociated mouse

hippocampal neurons were transfected with GFP (gray) and stimulated with

either preclustered Fc (Ctrl) or Fc-EB1 (EB1) for 30 min, followed by fixing

and staining for endogenous E5 using a-N-E5 (red). White rectangle outlines

magnified dendritic region showing examples of E5 staining (right).

(B) Lysates from 293 cells previously transfected with various combinations of

overexpressingplasmids containing E5-Myc, E1-Myc and/or Flag-EphB2were

immunoblotted with a-Myc, a-Flag, or a-Actin (loading control).
regulate synapse number. To determine if Ube3A and/or Cbl-b

catalyze E5 degradation we first asked if either of these E3

ligases interacts with and degrades E5 in 293 cells. When these

E3 ligases were epitope-tagged and expressed in 293 cells

together with E5 we found that E5 coimmunoprecipitates with

Ube3A but not with Cbl-b (Figure 7A). The coimmunoprecipita-

tion of Ube3A with E5 was specific in that Ube3A was not

coimmunoprecipitated with two other neuronal proteins, E1 or

the transcription factor MEF2. In a previous study we have

shown that Ube3A binds to substrates via a Ube3A binding

domain (hereafter referred to as UBD [Greer et al., 2010]). Using

protein sequence alignment programs, ClustalW and ModBase,

we identified a UBD in E5, providing further support for the idea

that E5 might be a substrate of Ube3A (Figure S7A). Consistent

with this hypothesis, we found that the level of E5 expression

is reduced in 293 cells cotransfected with titrating amounts of

Ube3A compared to cells cotransfected with titrating amounts

of Cbl-b (Figure S7B).

We asked if EB1/EphB-mediated E5 degradation in neurons is

catalyzed by Ube3A. To inhibit Ube3A activity we introduced into

neurons a dominant interfering form of Ube3A (dnUbe3A) that

contains a mutation in the ubiquitin ligase domain rendering

Ube3A inactive. We have previously shown that even though

dnUbe3A is catalytically inactive it still binds to E2 ligases and

to its substrates and functions in a dominant negative manner

to block the ability of wild-type Ube3A to ubiquitinate its

substrates (Greer et al., 2010). We found that when introduced

into 293 cells dnUbe3A binds to E5 (Figure 7A). We also found

by immunofluorescence microscopy that when overexpressed

in neurons, dnUbe3A blocks EB1/EphB stimulation of E5 degra-

dation (Figure 7B). EB1/EphB stimulation of E5 degradation was

also attenuated when Ube3A expression was knocked down by

a shRNA that specifically targets the Ube3A mRNA (Figure 7B;

Greer et al., 2010). Notably, the presence of the dnUbe3A did

not affect E5 expression in neurons in the absence of EphrinB

stimulation, suggesting that EphrinB stimulation of E5 Y361

phosphorylation may be required for Ube3A-mediated degrada-

tion of E5 (Figure S7C).

To determine if Ube3A-dependent degradation of E5 might be

relevant to the etiology of Angelman syndrome we asked if the

absence of Ube3A in a mouse model of Angelman syndrome

affects the level of E5 expression in the brain. We compared
(C) Lysates from 293 cells previously transfected with various combinations of

overexpressing plasmids containing Flag-EphB2, Flag-EphB2KD and/or

E5-Myc were immunoblotted with a-Myc, a-Flag, or a-Actin (loading control).

(D) Lysates from 293 cells previously transfected with various combinations of

overexpressing plasmids containing E5-Myc, E5-Y361F-Myc and/or Flag-

EphB2 were immunoblotted with a-Myc, a-Flag, or a-Actin (loading control).

Representative immunoblot is shown (top). From three independent experi-

ments E5 levels were quantified and normalized to E5 expression in absence

of EphB2-Flag (bottom). Error bars indicate ± SEM; **p < 0.01.

(E) Dissociated mouse hippocampal neurons transfected with GFP (gray) were

stimulated similar to (B) in the absence or presence of lactacystin and immuno-

stained with a-N-E5. White rectangle outlines magnified dendritic region

showing examples of E5 staining (right).

(F) WT and E5�/� brains were lysed and immunoprecipitated with a-C-E5

followed by immunoblotting with a-ub or a-N-E5.

See also Figure S6.
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Figure 7. EphB2-Mediated Degradation of

Ephexin5 Requires Ube3A

(A) Immunoprecipitation with a-HA from 293 cell

lysates previously transfected with various combi-

nations of plasmids containing E1-Myc, E5-Myc,

HA-DNUbe3A, HA-MEF2A, HA-Cbl-b, and/or HA-

Ube3A, followed by immunoblotting with a-HA or

a-Myc. Input protein levels and a-Actin loading

control are shown (bottom).

(B) Hippocampal mouse neurons were cotrans-

fected with GFP and control, HA-DNUbe3A or

Ube3A-shRNA at DIV10. At DIV14, neurons were

incubated with clustered Fc (�) or Fc-EB1 (+) for

30 min. Neurons were fixed and stained for E5

with a-N-E5 and quantified as described in the

methods. Quantification is of E5 staining intensity

normalized to Fc control. Error bars ± SEM; **p <

0.01, ANOVA.

(C) Ube3A wild-type and maternal-deficient

(Ube3Am-/p+) mouse brains were lysed and immu-

noblotted with a-N-E5, a-EphB2, a-MEF2, a-Actin

(loading control), or a-Ube3A (left). Samples were

normalized to a-Actin and quantified as described

in methods (right). Error bars indicate ± SEM; *p <

0.05, Mann-Whitney.

(D) Brain lysates from WT and Ube3Am-/p+ were

collected and treated similar to (C), immunoprecip-

itatedwith a-C-E5 and immunoblottedwith a-N-E5

and a-ub. Input protein levels are shown (right).

(E) Neurons from WT and Ube3Am-/p+ mice were

dissociated, cultured and transfected with GFP at

DIV10. At DIV14, neurons were incubated with pre-

clustered Fc or Fc-EB1 for 30 min. Neurons were

fixed and stained for E5with a-N-E5 and quantified

according to methods. Error bars indicate ± SEM;

**p < 0.01.

See also Figure S7.
the level of E5 protein expression in the brains of wild-type mice

to that expressed in the brains of mice in which thematernally in-

herited Ube3A was disrupted (Ube3Am-/p+). Because the pater-

nally inherited copy of Ube3A is silenced in the brain due to

imprinting, the level of Ube3A expression in Ube3Am-/p+ neurons

is very low. We found that the level of E5 expression in the brains

of Ube3Am-/p+ mice was significantly higher than that detected in

the brains of wild-type mice (Figure 7C). Moreover, the level of

ubiquitinated E5 in brains of Ube3Am-/p+ mice was significantly

reduced compared to the brains of litter mate controls

(Figure 7D). In addition we found that when neurons from wild-
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type and Ube3Am-/p+ brains were cultured

and then treated with EB1 the level of E5

protein was reduced upon EB1 treatment

in wild-type but not in Ube3Am-/p+

neurons (Figure 7E). Taken together,

these findings suggest that in response

to EB1 treatment E5 is tyrosine phosphor-

ylated by an EphB-dependent mecha-

nism, and that this leads to E5 degrada-

tion by a Ube3A-dependent mechanism.

If E5 degradation is disrupted due to

a loss of Ube3A as occurs in Angelman
syndrome the result is an increase in E5 expression and a disrup-

tion of the proper control of excitatory synapse number during

brain development.

DISCUSSION

Previous studies have revealed a role for EphrinB/EphB signaling

in the development of excitatory synapses (Klein, 2009).

However, the regulatory constraints that temper EphB-depen-

dent synapse development so that excitatory synapses form at

the right time and place, and in the correct number were not



known. In this study we identify a RhoAGEF, E5, which functions

to restrict EphB-dependent excitatory synapse development. E5

interacts with EphB prior to EphrinB binding, and by activating

RhoA serves to inhibit synapse development. The binding of

EphrinB to EphB as synapses form triggers the phosphorylation

and degradation of E5 by a Ube3A-dependent mechanism. The

reduction in E5 expression may allow EphB to promote excit-

atory synapse development by activating Rac and other proteins

at the synapse.

The findings that E5 functions to restrict excitatory synapse

number suggests that, even though EphBs promote excitatory

synapse development, there are constraints on the activity of

EphB so that synapse number is effectively controlled. There

are several steps in the process of synapse development where

E5 may function to restrict synapse number. One possibility is

that E5 functions early in development as a barrier to excitatory

synapse formation by activating RhoA and restricting the motility

or growth of dendritic filopodia that are the sites of contact by the

presynaptic neuron. For example, by inhibiting dendritic filopo-

dia formation or motility, E5 may decrease the number of

contacts the filopodia make with the presynaptic neuron, thus

resulting in the formation of fewer synapses. An alternative

possibility is that E5 functions to restrict synapse number later

in development perhaps to counterbalance the positive effects

of EphB on Rac that promote dendritic spine development. An

additional possibility is that E5 functions after excitatory synapse

development as a regulator of synapse elimination.

Our analyses of E5 function are most consistent with the

possibility that E5 functions early in the process of synapse

development. First, we find that E5 is expressed, active, and

bound to EphB prior to synapse formation. Second, the interac-

tion of EphrinBwith EphB, a process that is thought to be an early

step in excitatory synapse development, triggers the degrada-

tion of E5. Third, our preliminary time-lapse imaging studies

suggest that E5 is localized to newly formed filopodia prior to

synapse development where it appears to restrict filopodia

motility and growth (Margolis et al. unpublished). Thus, E5 might

function as an initial barrier to synapse formation until it is

degraded upon EphrinB binding to EphB.

It is possible that through its interaction with EphB, E5 marks

the sites where synapses will form, and that the degradation of

E5 is a critical early step in excitatory synapse development.

While the mechanisms by which E5 is degraded are not fully

understood, our studies suggest that the phosphorylation of

the N-terminus of E5 at Y361 triggers the Ube3A-mediated pro-

teasomal degradation of E5. One possibility is that prior to pY361

the N- and C-terminal portions of E5 interact, thereby protecting

E5 from degradation. The phosphorylation of E5 at Y361 may

relieve this inhibitory constraint allowing for E5 ubiquitination

and degradation. A similar mechanism has been shown to

regulate the activation of the Rac GEF Vav, (Aghazadeh et al.,

2000)). During EphrinA/EphA signaling it has been proposed

that Vav-mediated endocytosis of the EphrinA/EphA complex

may allow the conversion of the initial adhesive interaction

between EphrinA and EphA-expressing cells into a repulsive

interaction that results in growth cone collapse and axon repul-

sion. It is possible that E5 has a related function during EphB

signaling at synapses. Typically the EB/EphB interaction is
thought to be repulsive. This has been documented in studies

of EphB’s role in the process of axon guidance (Egea and Klein,

2007; Flanagan and Vanderhaeghen, 1998). However, during

synapse development the EphrinB/EphB interaction is thought

to result in synapse formation, a process that requires an interac-

tion between the developing pre- and postsynaptic specializa-

tion. One possibility is that when EphrinB and EphB mediate

the interaction between the incoming axon and the developing

dendrite, the interaction is facilitated by the degradation of E5

by Ube3A. Since E5 is a RhoA GEF, its presence might initially

lead to repulsion between the incoming axon and the dendrite.

However, the EphB-dependent degradation of E5 might convert

this initial repulsive interaction into an attractive one.

The finding that Ube3A is the ubiquitin ligase that controls

EphB-mediated E5 degradation is of interest given the role of

Ube3A in human cognitive disorders such as Angelman syn-

drome and autism. The absence of Ube3A function in Angelman

syndrome would be predicted to result in an increase in E5

protein expression, and thus a decrease in EphB-dependent

synapse formation. Consistent with this possibility, we find in a

mousemodel for Angelman syndrome that the level of E5 protein

expression is elevated and that in response to EphrinB treatment

E5 is not degraded. Likewise, several studies have indicated that

synapse development and function is disrupted in these mice

(Jiang et al., 1998; Yashiro et al., 2009).

The recent finding that the Ube3A gene lies within a region of

chromosome 15 that is sometimes duplicated in autism raises

the possibility that altered levels of Ephexin5 and the resulting

defects in excitatory synapse restriction might also be a mecha-

nism relevant to the etiology of autism. If this is the case, a

possible therapy for treating autism might be to reduce the level

of Ube3A activity, and thus increase the level of Ephexin5 ex-

pression. It is important to consider that in addition to Ephexin5,

Ube3A regulates the abundance of other synaptic proteins.

Nevertheless, the ultimate effect of the aberrant expression of

Ephexin5 and other Ube3A substrates on synapse development

and function will require further study. It seems likely that such

studies will provide further understanding of the development

of human cognitive function and new insights into how this

process goes awry in disorders such as Angelman syndrome

and autism.

EXPERIMENTAL PROCEDURES

DNA Constructs

Details of DNA constructs can be found in Supplemental Information.

Generation of E5�/� Mice

An E5 targeting vector was electroporated into 129 J1 ES cells, and positive

clones were identified by Southern hybridization with two separate probes

(see Supplemental Information).

Antibodies

Details of antibodies can be found in Supplemental Information.

Mice, Cell Culture, Transfections, and Ephrin Stimulations

Ube3Am�/p+ mice were previously described (Greer et al., 2010). EphB2

knockout mice were previously described (Kayser et al., 2008). 293T cells

were cultured in DMEM + 10% FBS and transfected using the calcium phos-

phatemethod.Organotypic slice cultureswere prepared fromP6mousebrains
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and biolistically transfected. Acute slices were prepared from P12-14 mice.

Dissociated neurons were cultured in Neurobasal Medium supplemented

with B27 and transfected using the Lipofectamine method. For details on cell

culture, transfections, and Ephrin stimulations, see Supplemental Information.

Cell Lysis, Immunoprecipitations, GEF Pull-Down Assays,

and Western Blots

Whole rat ormouse brains or cultured cells were collected and homogenized in

RIPA buffer. For immunoprecipitations, lysed cells were centrifuged and

supernatants were incubated with appropriate antibody for 2 hr at 4�C, fol-
lowed by addition of Protein-A or Protein-G beads (Santa Cruz Biotechnology)

for 1 hr, and washed three times with ice-cold RIPA buffer. For the a-PY361

detection experiment in 293T cells, samples were boiled in SDS buffer to

disrupt the E5/EphB2 interaction and diluted 1:5 in 1.253 RIPA buffer prior

to immunoprecipitation of E5-Myc. RBD and PBD pull-down assays were

conducted according to the manufacture’s suggestions (Upstate Cell

Signaling Solutions). For details see Supplemental Information.

In Situ Hybridization

To generate probes for in situ hybridization, mouse E5 and EphB2 cDNA were

subcloned into pBluescript II SK (+). Bluescript plasmids containing E5 or

EphB2 cDNA were linearized using the restriction enzyme BssHII. Sense and

antisense probes were generated using DIG RNA labelingmix (Roche) accord-

ing to manufacturer’s instructions. Full-length DIG-labeled probes were

subjected to alkaline hydrolysis as described in Supplemental Information.

Immunocytochemistry

Neurons were paraformaldehyde fixed in PBS. For measuring synapse

density, fixed neurons were incubated with a-PSD-95 and a-Synapsin

antibodies followed by a-Cy3 and a-Cy5 antibodies to visualize the primary

antibodies. For protein colocalization experiments fixed neurons were similarly

treated using a-EphB2 antibodies and a-N-E5 antibodies or a-pY361-E5.

For overexpression studies fixed neurons were incubated using a-Myc or

a-Flag antibodies to visualize overexpressed E5-Myc or EphB2-Flag protein

in the context of the GFP-labeled neurons. For details see Supplemental

Information.

Synapse Assay, Image Analysis, and Quantification

Imageswere acquired on a Zeiss LSM5Pascal confocal microscope and spine

and synapse analysis was performed as previously described (see Supple-

mental Information).

Ube3Am�/p+ Cultures

Dissociated hippocampal neurons from Ube3Am�/p+ and wild-type mice were

prepared as previously described (Greer et al., 2010).

Array Tomography

Array tomography was performed as previously described (Micheva and

Smith, 2007) with modifications as described in the Supplemental Information.

Electrophysiology

Electrophysiology was performed using standard methods (see Supplemental

Information).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

seven figures and can be found with this article online at doi:10.1016/j.cell.

2010.09.038.
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