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SUMMARY

Neuronal activity-regulated gene expression has
been suggested to be an important mediator of
long-lasting, experience-dependent changes in the
nervous system, but the activity-dependent compo-
nent of gene transcription has never been selectively
isolated and tested for its functional significance.
Here, we demonstrate that introduction of a subtle
knockin mutation into the mouse Bdnf gene that
blocks the ability of the activity-regulated factor
CREB to bind Bdnf promoter IV results in an animal
in which the sensory experience-dependent induc-
tion of Bdnf expression is disrupted in the cortex.
Neurons from these animals form fewer inhibitory
synapses, have fewer spontaneous inhibitory quantal
events, and exhibit reduced expression of inhibitory
presynaptic markers in the cortex. These results indi-
cate a specific requirement for activity-dependent
Bdnf expression in the development of inhibition in
the cortex and demonstrate that the activation of
gene expression in response to experience-driven
neuronal activity has important biological conse-
quences in the nervous system.

INTRODUCTION

Experience-dependent changes in the nervous system occur

throughout the lifetime of an animal. Sensory experience medi-

ates the structural and functional refinement of developing

neuronal circuits (Fox and Wong, 2005), and, in the mature brain,

use-dependent modification of neuronal circuits underlies impor-

tant adaptive functions of the nervous system, including learning,

memory, and behavior (Kandel, 2001). The discovery that excit-

atory neurotransmitters can stimulate new gene transcription

by triggering an influx of calcium into postsynaptic neurons

(Greenberg et al., 1986; Kornhauser et al., 1990; Morgan et al.,

1987) suggested a compelling mechanism by which stimulus-

evoked neuronal activity might effect long-lasting changes in

the structure and function of the nervous system. In the two de-

cades since, significant advances have been made in elucidating
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many of the key activity-responsive transcriptional regulators, the

calcium-dependent signaling pathways that couple extracellular

stimuli to their activation, and the programs of gene expression

that are activated in response to neuronal activity (Lanahan and

Worley, 1998; West et al., 2002).

Activity-dependent gene expression occurs when synaptic

activation triggers calcium influx at the membrane through

ligand- and voltage-gated calcium channels, thereby initiating

calcium-dependent signaling cascades that amplify and carry

the signal to activate transcription factors in the nucleus. Several

searches for activity-regulated genes have identified�300 genes

as being responsive to neuronal activity (Bartel et al., 1989;

Lanahan and Worley, 1998; Lin et al., 2008; Nedivi et al., 1993),

many of which fall into one of two categories. The first category

includes genes that themselves encode for transcriptional regu-

lators, exemplified by the classic immediate-early gene c-fos

(Greenberg et al., 1986) or the neuronal bHLH/PAS factor npas4

(Lin et al., 2008). The second category includes genes that

encode for neuronally enriched proteins that are believed to

function directly at the synapse and play important roles in neural

development and plasticity, such as Bdnf (Poo, 2001).

There is no doubt that genes whose transcription is regulated

by activity are important for the development and function of

the brain. However, despite considerable progress in our under-

standing of the program of neuronal activity-regulated gene

expression, direct evidence that the activity-dependent compo-

nent of transcription per se is specifically important for nervous

system development or function has been elusive. This fact is

due in part to limitations in our ability to experimentally manipu-

late the activity-dependent component of transcription indepen-

dent of the many other genetic programs regulating a given

gene’s transcription. For instance, the role of an activity-regu-

lated gene is most often investigated through loss-of-function

studies that remove the gene entirely, independent of the stimu-

lus state or cellular context. This approach can often lead to an

outcome in which the functions of a gene that are dependent

on its activity-dependent expression are conflated with, for in-

stance, its trophic functions in supporting cell health or survival.

In the case of one of the best-studied activity-regulated genes,

brain-derived neurotrophic factor (Bdnf), studies in mice that

completely lack Bdnf have demonstrated that it plays a key

role in neuronal survival, differentiation, migration, and dendritic

arborization (Ernfors et al., 1994; Jones et al., 1994; Schwartz
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Figure 1. Generation of Bdnf pIV, TMKI, CREmKI, and loxP Control Mice

(A) Genomic structure of the rodent Bdnf gene adapted from Aid et al. (2007). The discovery of additional exons in the rodent Bdnf gene has resulted in changes in

exon nomenclature; the four major transcripts now known as I, II, IV, and VI were initially described as I, II, III, and IV (in red), respectively, in Timmusk et al. (1993).

(B) Targeting strategy for the introduction of pIV, TMKI, CREmKI, and loxP control mutations into Bdnf promoter IV by homologous recombination. P, PciI; A, AgeI;

S, SphI; 50, 30 Southern probes; NEO/ZEO, neomycin-zeomycin positive selection cassette; DTA, diphtheria toxin negative selection cassette.

(C) Southern blot analysis of PciI-digested genomic DNA from targeted ES cells using the 50 probe indicates correct targeting of each mutation. pIV: WT, 11.6 kb;

mut., 5.3 kb; TMKI, CREmKI, loxP control: WT, 11.6 kb; mut., 5.7 kb.

(D) Direct sequencing of PCR products amplified from genomic DNA isolated from TMKI, CREmKI, or loxP control homozygous mice using primers spanning Bdnf

promoter IV.
et al., 1997). In addition, mice heterozygous for the loss of a Bdnf

allele show deficits in synaptic development, function, and plas-

ticity, as well as changes in body weight regulation, locomotor

activity, and aggression (Abidin et al., 2006, 2008; Carter et al.,

2002; Kernie et al., 2000; Korte et al., 1995; Lyons et al., 1999;

Patterson et al., 1996). Many of these diverse functions of Bdnf,

in particular its functions in synaptic development, function,

and plasticity, are thought to be regulated at least in part by its

neuronal activity-dependent expression (Poo, 2001), but direct

evidence for this idea is lacking.

In support of the idea that the many functions of Bdnf in the

nervous system may be dependent on the tight temporal, spatial,

and stimulus-specific regulation of Bdnf expression is the com-

plexity of its gene structure. The Bdnf gene is comprised of at

least eight distinct promoters that initiate transcription of multiple

distinct mRNA transcripts, each of which contains an alternative

50 exon spliced to a common 30 coding exon that contains the en-

tire open reading frame for the BDNF protein (Aid et al., 2007).

Through the use of alternative promoters, splice donors, and

polyadenylation sites, at least 18 distinct transcripts can be pro-

duced from the Bdnf gene (Figure 1A); remarkably, however,

each of these Bdnf mRNAs encodes an identical BDNF protein.
The functional significance of the transcriptional organization of

the Bdnf gene remains cryptic, but one attractive hypothesis is

that the production of many mRNAs that all encode the same

protein product provides for multiple layers of regulation of BDNF

expression, for instance, at the level of alternative promoter

usage, differential mRNA stability and translatability, or differen-

tial subcellular localization of either the mRNA message(s) or

protein. In support of this idea, it is well known that the various

Bdnf promoters are differentially responsive to neuronal activity;

in particular, in the cortex, promoter IV-dependent Bdnf tran-

scription accounts for the majority of neuronal activity-induced

Bdnf expression (Tao et al., 1998; Timmusk et al., 1993, 1994).

This observation prompted us to ask whether we could take

advantage of our understanding of the activity-dependent regu-

lation of the Bdnf gene to generate an animal model that allows

us to ask which, if any, of the physiological functions of Bdnf in

the nervous system are specifically controlled by the neuronal

activity-regulated component of its expression.

Our lab and others have extensively investigated the activity-

dependent activation of Bdnf promoter IV as a model for under-

standing the mechanisms mediating calcium-induced neuronal

gene expression. Experiments using a plasmid-based reporter
Neuron 60, 610–624, November 26, 2008 ª2008 Elsevier Inc. 611
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to recapitulate promoter IV activity revealed that a cAMP/Ca2+-

response element-like element (CaRE3/CRE) proximal to the

exon IV transcription start site is important for the ability of mem-

brane depolarization to induce promoter IV activation (Shieh

et al., 1998; Tao et al., 1998). In vitro studies indicate that this

element is bound by the transcription factor CREB, a calcium-

regulated factor that has important functions in controlling

many adaptive neuronal responses. CREB bound at promoter

IV becomes phosphorylated by calcium-regulated kinase cas-

cades in response to neuronal activity and subsequently recruits

components of the basal transcriptional machinery to Bdnf

promoter IV to activate gene expression (Lonze and Ginty,

2002; West et al., 2001).

Here, we report that mutation of the CaRE3/CRE (CREm) at

endogenous Bdnf promoter IV by gene targeting results in an

animal in which the neuronal activity-dependent component of

Bdnf transcription in the cortex is specifically disrupted. CREm

knockin mice exhibit a reduction in the number of inhibitory

synapses formed by cortical neurons in culture, a reduction in

spontaneous inhibitory quantal transmission measured in acute

brain slices, and a reduction in the level of inhibitory presynaptic

markers in the cortex. These findings provide a clear demonstra-

tion of a biological role for activity-dependent gene expression in

the regulation of cortical inhibition and also indicate a require-

ment for promoter IV-derived Bdnf expression in this process.

Interestingly, our findings point to a previously unappreciated

role for CREB in regulating inhibitory synapse development and

demonstrate the utility of mice bearing subtle mutations in gene

regulatory regions for uncovering novel, target-specific functions

for a transcription factor that may not be revealed by traditional

loss-of-function studies.

RESULTS

Generation of a Mouse Model with Impaired
Activity-Dependent Bdnf Expression
We chose to focus on the Bdnf gene as a model for understanding

the functional significance of neuronal activity-regulated gene

expression in the brain for several reasons. First, a large body

of work has demonstrated a critical role for Bdnf in many diverse

processes in nervous system development and function (Poo,

2001), many of which are regulated by neuronal activity. Second,

perhaps more than any other activity-regulated gene, the mech-

anisms by which calcium influx induces Bdnf transcription have

been extensively studied, lending insight into the type of genetic

lesion that could potentially block activity-dependent expression

of the gene (West et al., 2001). In the cortex, for example, pro-

moter IV-derived Bdnf transcripts comprise the majority of neuro-

nal activity-induced Bdnf expression (Tao et al., 1998; Timmusk

et al., 1993, 1994). In addition, unlike many other prototypical

immediate-early genes such as c-fos, the induction of Bdnf

exon IV-containing transcripts is selectively activated by the

influx of extracellular calcium through ligand- and voltage-gated

calcium channels; growth factor stimulation, for instance, does

not induce robust promoter IV activation. Thus, we reasoned

that disruption of exon IV-containing Bdnf transcripts might be

sufficient to specifically attenuate activity-dependent expression

of Bdnf in the cortex.
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Previous studies investigating the mechanisms of Bdnf pro-

moter IV activation have demonstrated that an evolutionarily

conserved 170 bp fragment proximal to the exon IV transcrip-

tional start site is sufficient to confer Ca2+-selective responsive-

ness to a plasmid-based reporter gene when transfected into

neurons in vitro. Mutagenesis analysis revealed the existence

of three Ca2+-responsive elements (CaREs), CaRE1, CaRE2,

and CaRE3/CRE (Figure 1D), each of which, when individually

mutated, was sufficient to attenuate activity-dependent induc-

tion of the promoter IV reporter (Tao et al., 1998). At the time

we began this study, the prevailing view was that CaRE1 is

bound by the calcium-responsive transcription factor, CaRF

(Tao et al., 2002); CaRE2 contains an E box element and is bound

by the bHLH transcription factors, USF1 and USF2 (Chen et al.,

2003b); and CaRE3 is a cAMP/Ca2+-response element (CRE)-

like element that is bound by CREB (Tao et al., 1998).

Based on the available information at the time, we used

homologous recombination in embryonic stem cells to generate

three independent lines of mutant mice in which endogenous

Bdnf promoter IV is genetically disrupted (Figure 1B). First, we

generated a deletion in Bdnf promoter IV (pIV�/�) that removes

the previously mapped 170 bp proximal promoter fragment, as

well as the transcriptional start site, to completely abrogate

transcription from promoter IV. Second, we introduced point

mutations into the CREB-binding site CaRE3/CRE element of

Bdnf promoter IV (CREmKI, Figures 1B and 1D), which was

predicted to block promoter IV induction based on the plasmid

reporter assay. Finally, since it is unknown whether mutation of

an individual transcriptional control element can independently

affect promoter activity in the context of endogenous chromatin,

we also generated a third line in which we introduced point

mutations into each of the CaRE1, CaRE2, and CaRE3/CRE

elements of Bdnf promoter IV in combination (triple-site mutant,

TMKI, Figures 1B and 1D). We reasoned that a combination of

mutations might function more effectively to block promoter IV

activation than mutation of the CaRE3/CRE alone, since previ-

ous studies at the c-fos promoter suggest that the concerted

action of multiple transcriptional elements is required for gene

regulation (Robertson et al., 1995).

For each mutant line, the gene targeting strategy to introduce

the mutation into Bdnf promoter IV in embryonic stem cells

necessitates the introduction of a 34 bp loxP sequence in the vi-

cinity of the mutation as a by-product of the selection procedure

after homologous recombination. To control for the possibility

that the presence of the loxP sequence could affect gene ex-

pression from the Bdnf locus in unexpected ways, we generated

a fourth mouse line in which promoter IV is left unaltered but that

differs from a wild-type mouse only by the presence of the loxP

sequence in an unconserved region of the large intron between

exons VII and VIII (loxP control). Since the loxP site in all three

mutants, pIV�/�, CREmKI, and TMKI, is engineered into this

identical location (Figure 1B), any differences seen in the mutant

lines as compared to the loxP control must therefore stem from

their respective mutations at Bdnf promoter IV. Southern blot

analysis of genomic DNA isolated from the targeted ES cells,

as well as from heterozygous and homozygous mutant mice for

all four mutant mouse lines, pIV�/�, CREmKI, TMKI, and loxP

control, resulted in the predicted mutant allele structure after
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recombination (Figures 1C and S1 [available online], data not

shown). The CREmKI, TMKI, and loxP control mutations were

further verified by direct sequencing of the genomic DNA from

homozygous mutants (Figure 1D).

Mutation of the CREB-Binding Site in Bdnf Promoter IV
Impairs Neuronal Activity-Regulated Bdnf Transcription
To test whether the introduction of pIV�/�, CREmKI, and TMKI

mutations into Bdnf promoter IV blocks neuronal activity-depen-

dent Bdnf expression, we prepared dissociated primary cortical

cultures from the brains of homozygous mutant and wild-type

or loxP control littermates for each mutant line. Following mainte-

nance in vitro for 5 days (5 DIV), neurons were depolarized with

high extracellular potassium chloride for varying amounts of

time, RNA was extracted, and the levels of Bdnf mRNA tran-

scripts were measured by quantitative real-time PCR (qPCR).

As expected, deletion of Bdnf promoter IV results in a complete

loss of exon IV-containing Bdnf mRNAs (Figure 2A). Furthermore,

mutation of either all three CaREs in combination or of the CaRE3/

CRE alone is sufficient to cause an�90% reduction in the level of

Bdnf promoter IV induction (Figures 2B and 2C). This failure of

Bdnf promoter IV activation does not reflect a general defect

in calcium-dependent signaling in these mutants because the

induction of other immediate-early genes, including c-fos,

activity-regulated cytoskeletal-associated protein (Arc), and the

other major activity-regulated Bdnf transcript exon I, is unaf-

fected in pIV�/�, CREmKI, or TMKI neurons (Figures 2G–2I

and S2; data not shown). The impairments in promoter IV activa-

tion result in an�70% or 60% reduction in the activity-dependent

Figure 2. Activity-Dependent Bdnf Tran-

scription in pIV�/�, TMKI, and CREmKI

Cortical Neurons Is Impaired in Response

to Membrane Depolarization

Levels of Bdnf exon IV (A–C), exon IX (coding exon)

(D–F), and c-fos (G–I) mRNA in 5 DIV cortical

neurons prepared from pIV�/� and wild-type litter-

mates (A, D, and G), homozygous TMKI and loxP

control littermates (B, E, and H), or homozygous

CREmKI and loxP control littermates (C, F, and I)

that were either mock-treated or membrane depo-

larized with high extracellular potassium for the in-

dicated amounts of time. Differences in Bdnf exon

IV and total Bdnf mRNA expression are statistically

significant for pIV�/�, TMKI, or CREmKI versus

their respective controls (p < 0.01, repeated-

measures ANOVA; p < 0.01, pairwise comparisons

at each time point 1 hr or longer, Bonferroni-Dunn

post hoc test). Data are mean ± SEM from n = 3

(pIV�/� and CREmKI) or n = 2 (TMKI) independent

experiments in which each sample was measured

in triplicate.

induction of total Bdnf mRNA in pIV�/�

or CREmKI and TMKI cortical neurons,

respectively (Figures 2D–2F). This impair-

ment in total Bdnf mRNA induction is

reflected in an �50% decrease in BDNF

protein levels in pIV�/� or CREmKI cortex

(Figure S3, see also Figure 4F). Thus, all

three mutations are sufficient to cause a significant impairment

in activity-dependent Bdnf expression in neurons.

We chose to focus our study on the CREmKI mutant for

several reasons. First, the CREmKI mutation represents a subtle

change in nucleotide sequence but is sufficient to cause a sub-

stantial impairment in the activity-dependent induction of Bdnf,

comparable to that observed in TMKI neurons. Second, the

CREmKI mutant provides several significant advantages over

the pIV�/�mutant for selectively evaluating the functional signif-

icance of both activity-dependent and promoter IV-dependent

Bdnf transcription. Whereas the pIV�/� deletion mutant com-

pletely removes promoter IV-derived transcript independent of

the stimulus state of the neurons, the CREmKI mutant impairs

Bdnf promoter IV activation specifically in response to neuronal

activity-dependent rises in calcium by eliminating binding of the

Ca2+-regulated factor CREB to Bdnf promoter IV (see below,

Figure 8). The CREmKI mutation has an additional advantage

in that it maintains the endogenous configuration of the Bdnf

locus, thereby circumventing potential artifacts that can arise

in deletion mutants where the spacing among residual promoter

elements and exons is changed. Finally, since previous studies

strongly suggest that the CaRE3/CRE element in Bdnf promoter

IV is bound by CREB (Tao et al., 1998), the CREmKI mutant also

has the potential to provide insight into specific functions of

CREB-dependent gene regulation in the nervous system.

CREmKI mice are viable, fertile, born in the expected Mende-

lian ratios, and visually indistinguishable from loxP control

littermates. In addition, CREmKI animals have comparably sized

brains to loxP control animals, show no gross anatomical
Neuron 60, 610–624, November 26, 2008 ª2008 Elsevier Inc. 613
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alterations in cortical, cerebellar, or hippocampal structure, no

obvious changes in gait, and no obvious defects in cortical

layering (see Supplemental Experimental Procedures,

Figure S4, and data not shown). These observations suggest

that, in contrast to the complete loss of Bdnf in Bdnf�/�mutants,

the introduction of a subtle knockin mutation into Bdnf promoter

IV to specifically impair activity-dependent Bdnf expression

does not have a strong effect on neuronal survival.

To investigate how the CREmKI mutation affects activity-

regulated Bdnf expression in response to glutamate receptor

activation, we treated 12 DIV cortical neurons, which have devel-

oped many more synaptic contacts than 5 DIV neurons, with

NMDA to stimulate NMDA-type glutamate receptors, a major

mediator of excitatory neurotransmission. Similar to our findings

under membrane-depolarizing conditions, we observed signifi-

cant impairments in the activation of Bdnf promoter IV and total

Bdnf expression in CREmKI neurons as compared to loxP

control neurons (Figures 3A and 3B) in response to NMDA

stimulation. Interestingly, when we examined the expression of

the remaining major Bdnf transcripts (Figures 1A, 3C, 3D, and

3F) as well as other activity-regulated genes in 12 DIV CREmKI

neurons, we were surprised to find that the induction of most im-

mediate-early genes, including neuronal pentraxin 2 (NP2), Arc,

c-fos, as well as Bdnf exons I and II, is significantly upregulated

in response to stimulation with NMDA (Figures 3C–3E and data

not shown). These observations raise the interesting possibility

that the general increase in neuronal activity-dependent tran-

scription in 12 DIV CREmKI neurons may be secondary to an in-

crease in their overall level of excitability. These differences may

not be obvious after only 5 days in culture when neurons are not

extensively synaptically connected (Figures 2G–2I).

Mutation of the CREB-Binding Site in Bdnf Promoter IV
Impairs Sensory Experience-Driven Bdnf Transcription
in the Intact Brain
We next examined whether the activity-dependent expression of

Bdnf in the intact CREmKI brain is affected in response to a phys-

iologically relevant environmental stimulus. Adult mice were

maintained in total darkness for 14 days to reduce levels of sen-

sory activity-driven transcripts in the visual cortex. RNA was then

harvested from the primary visual cortex of mice that were either

maintained in darkness or exposed to light for 90 min, and the

levels of Bdnf transcripts were measured by qPCR. We found

that the nearly 20-fold increase in the levels of exon IV-containing

transcripts measured in loxP control visual cortex in response to

light exposure is reduced by �75% in CREmKI visual cortex

(Figure 4A). The activity-dependent induction of gene expression

measured in the visual cortex is specific to visual experience

because it is not observed in the somatosensory cortex of either

loxP control or CREmKI brains (Figure S5). Interestingly, we also

observed that many other immediate-early genes, including

c-fos, Arc, and NP2, are more highly induced in the visual cortex

of CREmKI animals in response to light stimulation when com-

pared to loxP controls (Figure 4B and data not shown). More-

over, measurements of activity-dependent gene expression in

the cortex of CREmKI and loxP control animals given seizures

by administration of the chemoconvulsant kainic acid resulted

in similar findings (Figures 4C–4E and S6). The heightened induc-
614 Neuron 60, 610–624, November 26, 2008 ª2008 Elsevier Inc.
tion of many activity-regulated genes in response to neuronal

activity in CREmKI animals compared to controls again suggests

the possibility of changes in the excitability of neuronal circuits in

the CREmKI brain.

The impairment in activity-dependent Bdnf promoter IV tran-

scription in response to light exposure in CREmKI visual cortex

results in an �50% decrease in the induction of total Bdnf tran-

scripts driven by sensory stimulation (Figure 4A), as compared to

loxP control animals. This reduction in Bdnf mRNA is reflected in

an �60% decrease in the induction of BDNF protein levels

in visual cortex in response to visual experience (Figure 4F). Im-

portantly, the CREmKI mutation does not appear to affect Bdnf

expression under conditions of significantly reduced neuronal

activity, since levels of both promoter IV-derived and total Bdnf

Figure 3. Neuronal Activity-Dependent Bdnf Transcription in

CREmKI Cortical Neurons Is Impaired in Response to Glutamate

Receptor Activation

Levels of Bdnf exon IV (A), total Bdnf (exon IX) (B), Bdnf exon I (C), Bdnf exon II

(D), NP2 (E), and Bdnf exon VI (F) mRNA in 12 DIV cortical neurons prepared

from CREmKI or loxP control littermates that were either mock stimulated or

treated with 20 mM NMDA for the indicated amounts of time. *p < 0.01, re-

peated-measures ANOVA, pairwise comparisons at indicated time points,

Bonferroni-Dunn post hoc correction. Data are mean ± SEM from n = 2

independent experiments in which each sample was measured in triplicate.
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Figure 4. Sensory Experience-Dependent Bdnf Expression Is Impaired in the Intact CREmKI Brain

(A and B) Levels of the indicated transcripts in the primary visual cortex of adult CREmKI and loxP control mice reared in darkness for 14 days, after which they

were either maintained in darkness (�) or exposed to light for 90 min (+). Within each transcript, mRNA levels are reported as fold induction relative to the loxP

control unstimulated (�) condition. In either loxP control or CREmKI visual cortex, light stimulation induced the expression of all mRNAs measured (p < 0.01,

two-way ANOVA with Bonferroni Dunn post hoc test), except for gapdh, which served as a non-activity-regulated gene control.

(C–E) Bdnf exon IV, total Bdnf, and c-fos mRNA levels in the cortex of CREmKI and loxP control mice injected with either saline (time 0) or kainic acid (KA) for the

indicated amounts of time.

(F) Levels of BDNF protein in the primary visual cortex of animals from (A) and (B).

(G) The unstimulated (�) levels of Bdnf exon IV and total Bdnf in CREmKI and loxP control visual cortex are replotted from (A) for direct comparison (p > 0.05,

two-way ANOVA with Bonferroni-Dunn post hoc test).

Data are from n = 5–7 animals per condition for both visual stimulation and KA seizure experiments. Each animal was measured in triplicate, and data are

presented as mean ± SEM. Asterisks denote p < 0.01, two-way (visual simulation) or repeated-measures (KA seizure) ANOVA with Bonferroni-Dunn post hoc

test between indicated pair.
transcripts are similar in sensory-deprived loxP control and

CREmKI visual cortex (Figure 4G, p > 0.05). Taken together,

these results provide strong evidence that the neuronal

activity-dependent component, but not the basal component,

of Bdnf transcription is selectively impaired in the intact brains

of CREmKI animals in response to a physiologically relevant

sensory experience and demonstrate the utility of the CREmKI

animal model for examining the functional significance of neuro-

nal activity-regulated gene expression for nervous system

development and function.

Neuronal Activity-Dependent Bdnf Expression
Regulates the Development of Inhibition
in the Nervous System
Our observations that the neuronal activity-dependent induction

of many immediate-early genes, including non-promoter IV-

derived Bdnf transcripts, c-fos, NP2, or Arc, is enhanced in ma-

ture CREmKI neuronal cultures or in the intact brain of CREmKI
mutants suggested that neuronal connectivity may be altered in

CREmKI brains. In addition, a large body of work has indepen-

dently established both BDNF and neuronal activity as positive

regulators of inhibitory synapse development. For example,

application of recombinant BDNF or BDNF overexpression

promotes the development of inhibition (Huang et al., 1999;

Ohba et al., 2005), whereas reduction of neuronal activity using

pharmacological blockers or by sensory deprivation retards the

maturation of inhibition (Benevento et al., 1995; Hendry and

Jones, 1986; Rutherford et al., 1997). A compelling hypothesis

that arises from this work suggests that neuronal activity regu-

lates the development of inhibitory synapses through its effects

on Bdnf gene transcription. The CREmKI mutant allows us to

directly test this hypothesis by asking whether the impairment

in activity-dependent Bdnf expression affects the development

of inhibition in the nervous system.

To specifically investigate the effect of the CREmKI mutation

on the development of inhibitory synapses, we first prepared
Neuron 60, 610–624, November 26, 2008 ª2008 Elsevier Inc. 615
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Figure 5. Impaired Activity-Dependent Bdnf

Expression Reduces the Number of Inhibi-

tory Synapses Formed on CREmKI Neurons

in Culture

(A) Representative images of GFP-transfected,

E17.5 + 18 DIV CREmKI and loxP control littermate

cortical neurons, immunostained with the indi-

cated antibodies to label pre- and postsynaptic

inhibitory synapse terminals. Scale bar, 10 mm.

(B) Enlargement of the boxed area in (A) shows

details of dendrites. The GFP signal is converted

to gray to allow better visualization of the synaptic

puncta. Scale bar, 5 mm.

(C–E) Quantification of the average density of

GAD65/GABAARg2 ([C], 78–81 cells/condition),

VGAT/GABAARb2/3 ([D], 65–66 cells/condition),

and synapsinI/PSD-95 ([E], 63–65 cells/condition)

coclusters along the dendrites of GFP-transfected

CREmKI and loxP control neurons. *p < 0.01, two-

way ANOVA with pairwise comparison by Bonfer-

roni-Dunn post hoc test. Data are mean ± SEM

from three to four independent experiments.

(F) Quantification of dendritic branch complexity

by Sholl analysis plots the number of dendritic

branches intersecting concentric circles of in-

creasing radii centered on the cell body. p > 0.05

by repeated-measures ANOVA; data are mean ±

SEM from 26–28 cells/condition from two

independent experiments.
low-density cortical cultures from CREmKI and loxP control

littermates that allowed us to quantify synapse density by immu-

nostaining. Neurons were transfected with a plasmid encoding

green fluorescent protein (GFP) at 5 DIV and were fixed and im-

munostained at 18 DIV with antibodies that recognize the

presynaptic inhibitory marker GAD65 and the postsynaptic

inhibitory marker GABAA receptor g2 subunit (GABAARg2). The

number of inhibitory synapses that form on a neuron was quan-

tified as the number of colocalized GAD65 and GABAARg2

puncta that overlap with GFP signal (Figures 5A and 5B).

Using these criteria, we observed that significantly fewer inhib-

itory synapses form on CREmKI cortical neurons than on loxP

control littermate neurons in culture (Figures 5A–5C). A similar

result was also seen when inhibitory synapses were quantified

using an independent set of markers, the inhibitory presynaptic

marker VGAT and the inhibitory postsynaptic marker GABAA

receptor b2/3 subunits (Figure 5D). The decrease in synapse

number in CREmKI neurons appears specific to inhibitory synap-

ses because no difference in the number of excitatory synapses

was detected when CREmKI neurons were compared to loxP

control neurons using the presynaptic marker synapsin I and the

excitatory postsynaptic marker PSD95 (Figure 5E). In addition,

the reduction in inhibitory synapse number in CREmKI neurons

does not appear to be secondary to poor cell health since no

significant differences between CREmKI and loxP control litter-

mate neuronal cultures were observed in the number of pyknotic

nuclei present (data not shown) or in the extent of dendritic

arborization, as quantified by Sholl analysis (Figure 5F). These

results demonstrate that the activity-dependent expression of

Bdnf is important for the development of inhibitory, but not

excitatory, synapses in neurons maintained in culture.
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Although many of the key steps of synaptogenesis are recapit-

ulated by dissociated neurons as they reestablish their connec-

tions in culture (Ziv and Garner, 2004), we also wanted to examine

the role of activity-dependent Bdnf expression in regulating the

development of inhibition in the context of an endogenous neural

circuit. Since our previous data indicate that visual experience-

dependent Bdnf transcription is impaired in CREmKI brains and

because previous studies have implicated Bdnf in the regulation

of cortical inhibition and plasticity in the visual cortex, we chose to

measure the number of functional inhibitory synapses that form

on neurons in an intact circuit in the primary visual cortex of

CREmKI animals. We prepared acute slices containing primary

visual cortex (V1) from the brains of P16–P18 CREmKI or loxP

control littermates and obtained whole-cell patch-clamp record-

ings from layer II/III pyramidal neurons in V1 to measure sponta-

neous miniature inhibitory postsynaptic currents (mIPSCs)

(Figure 6A). Pharmacologically isolated mIPSCs were demon-

strated to be GABAAR mediated, since they were abolished by

treatment with picrotoxin (data not shown). We observed a signif-

icant decrease in the frequency of mIPSC events in CREmKI neu-

rons (interevent interval, 742.4 ± 36.8 versus 355.4 ± 14.7 ms,

CREmKI and loxP control, respectively; Figures 6B–6C(I)), sug-

gesting that impaired activity-dependent Bdnf transcription in

CREmKI cortex results in fewer functional inhibitory synapses

as compared to loxP control. Interestingly, we also found a signif-

icant increase in the amplitude of mIPSCs in CREmKI neurons

(28.1 ± 0.7 versus 23.9 ± 0.7 pA, CREmKI and loxP control, re-

spectively; Figures 6B–6C(II)), suggesting that activity-depen-

dent Bdnf expression can regulate inhibitory synapse strength.

Whereas the change in mIPSC amplitude in CREmKI neurons

might reflect the direct action of activity-dependent Bdnf on



Neuron

Activity-Dependent Bdnf Controls Cortical Inhibition
vesicle neurotransmitter content or postsynaptic GABAA recep-

tor number, it could also occur secondarily as a homeostatic ad-

justment to the decrease in inhibitory input number. Neverthe-

less, these findings are consistent with our measurements by

immunofluorescence staining in cultured cortical neurons indi-

cating that fewer inhibitory synapses form on CREmKI neurons

and strongly support the hypothesis that activity-dependent

Bdnf transcription plays a critical role in GABAergic synapse de-

velopment in the nervous system.

Because mIPSCs reflect the spontaneous release of individual

neurotransmitter vesicles at presynaptic sites of contact,

changes in mIPSC frequency correlate with changes in inhibitory

synapse number, but they can also be affected by changes in

presynaptic properties, such as the probability of neurotransmit-

Figure 6. Neuronal Activity-Dependent Bdnf Expression Controls

the Development of Cortical Inhibition

(A) Representative traces of mIPSCs recorded from layer II/III V1 pyramidal

neurons in loxP control and CREmKI acute cortical slices.

(B) Cumulative probability distributions of mIPSC interevent intervals (I) and

amplitudes (II) recorded from loxP control and CREmKI neurons. p < 0.01 by

either Kolmogorov-Smirnov test or Monte Carlo simulation (see Supplemental

Experimental Procedures).

(C) Average interevent interval (I) and amplitude (II) of mIPSCs recorded from

loxP control and CREmKI neurons. Data are mean ± SEM, p < 0.01 by

Student’s t test. Data are from 18–20 cells/genotype recorded from 12 pairs

of littermates.
ter vesicle release. As an independent measurement of inhibitory

synapse number in CREmKI neurons connected together in an

endogenous circuit, we immunostained histological sections of

visual cortex prepared from P20–P24 CREmKI or loxP control

littermates for inhibitory synaptic markers. We observed modest,

but significant decreases in the intensity of staining for the

inhibitory presynaptic markers GAD65 and VGAT in layer II/III

of CREmKI visual cortex as compared to loxP control visual

cortex (Figures 7A–7C), consistent with a reduction in inhibitory

synapse number in CREmKI neurons. However, immunostaining

for the presynaptic marker synapsin I (data not shown) or the ex-

citatory presynaptic marker VGLUT1 (Figures 7A and 7D) is sim-

ilar in CREmKI and loxP control visual cortex, consistent with our

previous observation that excitatory synapse development is un-

affected in CREmKI neurons in culture. Taken together, our data

demonstrate a role for neuronal activity-dependent Bdnf expres-

sion in the development of inhibition in the cortex, and suggest

that impairments in activity-dependent Bdnf transcription lead

to a shift in the ratio of excitation to inhibition in the brain that

may increase the excitability of the CREmKI brain.

To begin to gain insight into the cellular mechanisms by which

activity-dependent Bdnf expression regulates inhibitory synapse

number, we next asked whether the decrease in inhibition

observed in CREmKI brains might be a simple consequence of

changes in the number of cortical inhibitory neurons, since total

Bdnf null mice exhibit a dramatic reduction in the density of

parvalbumin-positive and NPY-positive inhibitory neurons in

the cortex (Jones et al., 1994). We focused our analysis on

these populations of interneurons and employed stereological

methods to quantify the number of parvalbumin- or NPY-positive

neurons in the visual cortex of CREmKI or loxP littermate control

mice. To control for any possible changes in cell density, inter-

neuron counts were normalized to the total number of cell nuclei

as quantified by the DNA-binding dye Hoechst 33342. We

observed no significant difference in the number of either parval-

bumin- or NPY-positive interneurons in CREmKI visual cortex

(Figures 7E and 7F), suggesting that reductions in inhibitory syn-

apse number in CREmKI neurons are not secondary to changes

in inhibitory neuron number. Since no molecular marker exists

that can easily label all known GABAergic cell types, we cannot

exclude the possibility that the differentiation of other classes of

interneurons is affected in CREmKI mutants. However, since

parvalbumin- and NPY-positive interneurons together comprise

more than 50% of the inhibitory neurons in the cortex, and since

these specific populations of interneurons have been previously

shown to be Bdnf dependent in the context of the complete loss

of Bdnf, our data suggest that the activity-dependent compo-

nent of Bdnf expression is important for the formation or mainte-

nance of inhibitory synapses by GABAergic neurons, but not for

the survival or differentiation of GABAergic neurons.

Loss of CREB Binding Leads to Disassembly of the
Transcriptional Activating Complex at Bdnf Promoter IV
As the loss of activity-dependent Bdnf expression in CREmKI

animals is due to the specific mutation of the CaRE3/CRE in

Bdnf promoter IV, a sequence that is bound by the transcription

factor CREB, our results also potentially point to a role for CREB

in inhibitory synapse development that has not been previously
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Figure 7. Reduced Immunoreactivity for Inhibitory Synaptic Markers in CREmKI Cortex

(A) Representative images of immunostaining with antibodies recognizing GAD65 (red), which is enriched in inhibitory presynaptic terminals, and VGLUT1 (green),

which is enriched at excitatory presynaptic terminals, in layer II/III of CREmKI and loxP control primary visual cortex. Scale bar, 5 mm.

(B–D) Quantification of the average intensity of a-GAD65 ([B], 74–77 fields/genotype), a-VGAT ([C], 48 fields/genotype), and a-VGLUT1 ([D], 48 fields/genotype)

immunostaining in CREmKI and loxP control littermates. *p < 0.01, two-way ANOVA with pairwise comparison by Bonferroni-Dunn post hoc test. Data are mean ±

SEM from three to four pairs of littermates.

(E) and (F) Quantification of the number of parvalbumin- (E) and NPY- (F) positive inhibitory neurons in the primary visual cortex of CREmKI and loxP control

littermates, normalized to the number of total nuclei. p > 0.05 for either parvalbumin-positive or NPY-positive neurons, two-way ANOVA. Data are mean ±

SEM collected from n = 24 hemispheres from three pairs of littermates.
described. CREB is a well-established regulator of calcium-

dependent gene expression that has important functions in

nervous system development and function, including survival,

synaptic plasticity, and learning and memory (Flavell and Green-

berg, 2008; West et al., 2002). The central role of CREB in neuro-

nal survival and maintenance has hampered the study of CREB

function in mature neurons; for instance, postnatal disruption

of CREB in the forebrain leads to widespread neurodegeneration

(Mantamadiotis et al., 2002), preventing the study of other CREB

functions in these neurons. However, given that CREB regulates

a transcriptional program comprising hundreds, if not thousands

of genes (Impey et al., 2004), only a portion of which are involved

in survival, many additional functions of CREB in the nervous

system undoubtedly remain to be discovered. Our findings

with CREmKI mice suggest that one of these additional functions

of CREB is the control of inhibitory synapse development via the

calcium-dependent regulation of Bdnf expression.

To explore this idea, we used chromatin immunoprecipitation

(ChIP) to directly assess the effect of the CREmKI mutation on

the binding of CREB to endogenous Bdnf promoter IV in the

brain. Forebrains from CREmKI and loxP littermate control

mice were treated with formaldehyde to covalently crosslink

endogenous protein-DNA complexes, which were then mechan-
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ically sheared and immunoprecipitated with an antibody against

CREB. The specificity of the anti-CREB antibody for use in ChIP

experiments has been previously validated in neurons that lack

CREB protein (Riccio et al., 2006). qPCR measurements indi-

cated that whereas Bdnf promoter IV-containing DNA fragments

are enriched in CREB immunoprecipitates prepared from loxP

control brains as compared to control immunoprecipitates

from loxP control brains, CREB immunoprecipitates from litter-

mate CREmKI brains do not contain detectable levels of Bdnf

promoter IV gDNA (Figure 8B). The failure to detect CREB

binding at promoter IV in CREmKI brains is not due to differences

in the level of CREB expression (Figure 8A) or the ability to immu-

noprecipitate CREB under crosslinking conditions between

CREmKI and loxP control brains (Figure 8A), and we detected

robust CREB binding to other known CRE-containing CREB

target promoters, such as c-fos or Nr4a1, in CREmKI brains (Fig-

ure 8B and data not shown). In contrast, we detected no binding

of CREB in either loxP control or CREmKI brains to negative

control regions in Bdnf intron VII, in the Bdnf 30 untranslated

region (UTR), or within the Nr4a1 gene (Figure 8B and data not

shown). Taken together, these data provide direct demonstra-

tion that Bdnf promoter IV is an endogenous target gene of

CREB in the brain and demonstrate that mutation of the
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Figure 8. Loss of CREB Binding at Bdnf Promoter IV in CREmKI Brains Leads to the Disassembly of the Transcriptional Activating Complex at

Bdnf Promoter IV

(A) a-CREB immunoprecipitates were isolated from the cross-linked forebrains of CREmKI and loxP control littermates under conditions identical to those used

for chromatin immunoprecipitation (ChIP) and analyzed by western blotting with an independent antibody against CREB.

(B)–(F) qPCR measurement of the levels of the indicated genomic DNA regions in a-CREB (B), a-CBP (C), a-polymerase II (D), a-MEF2D (E), and a-histone H3 (F)

chromatin immunoprecipitates prepared from the forebrains of CREmKI and loxP control littermates. *p < 0.01, two-way ANOVA with pairwise comparison by

Bonferroni-Dunn post hoc test. Data are mean ± SEM from n = 4 (a-CREB), n = 3 (a-MEF2D, a-CBP), or n = 2 (a-pol II, a-H3) independent experiments in which

each sample was measured in triplicate.
promoter IV CaRE3/CRE element abrogates CREB binding to

Bdnf promoter IV in the intact brain. Together with our earlier ex-

periments demonstrating that Bdnf promoter IV transcription is

induced upon activity-dependent CREB phosphorylation (Tao

et al., 1998), these findings strongly suggest that the impairment

in neuronal-activity dependent induction of Bdnf expression in

CREmKI mice is due to a loss of CREB-binding and regulation

at promoter IV.

Since our initial characterization of CaRF (Tao et al., 2002),

USF1/2 (Chen et al., 2003b), and CREB (Tao et al., 1998) as

important regulators of Bdnf promoter IV activation, ongoing

work in our lab and others has described additional components

of the transcriptional regulatory complex at promoter IV, includ-

ing the transcription factors BHLHB2 (Jiang et al., 2008), NPAS4

(Lin et al., 2008), and MEF2 (S.W. Flavell, T.K. Kim, and M.E.G.,

unpublished data); the methyl-DNA binding protein MeCP2

(Chen et al., 2003a; Martinowich et al., 2003); and the transcrip-

tional coactivator CBP (West et al., 2001). These factors are

believed to function together with CREB to confer calcium-

and neural cell type-specific regulation of Bdnf transcription,

but little is understood about how they cooperate with one an-

other to regulate transcription or how they affect the recruitment
of one another to Bdnf promoter IV. We took advantage of the

CREmKI mutant to assess the contribution of CREB to the

assembly of various components of the transcriptional activating

complex at Bdnf promoter IV.

We first examined whether loss of CREB binding affects the

recruitment of the transcriptional coactivator CBP to Bdnf

promoter IV. Phosphorylation of CREB at Ser133 in response

to rises in intracellular calcium recruits the binding of CBP, which

functions as a transcriptional coactivator both through its intrin-

sic histone acetyltransferase activity and through its stabilization

of components of the preinitiation complex at promoters (Hong

et al., 2005; Lonze and Ginty, 2002). Although CBP has been

best studied in the context of coregulation with CREB, it is a

general transcriptional cofactor that cooperates with a wide

variety of other transcription factors, including MEF2 (Sartorelli

et al., 1997). Performing ChIP with an antibody directed against

CBP, we observed significant binding of CBP to Bdnf promoter

IV in loxP control brains that was almost completely absent in

CREmKI littermate brains (Figure 8C). By contrast, in both

CREmKI and loxP control brains, we detected strong binding

of CBP to the mNr4a1 promoter and relatively little binding of

CBP in the Bdnf 30 UTR negative control region (Figure 8C).
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These data indicate that loss of CREB binding to Bdnf promoter

IV disrupts the binding of the general transcriptional coactivator

CBP to the promoter as well. To determine how loss of CBP

binding to Bdnf promoter IV affects the recruitment of the basal

transcriptional machinery, we also performed ChIP with an anti-

body (monoclonal 8WG16) directed against the hypophosphory-

lated state of the largest subunit of RNA polymerase II, which is

specifically enriched at transcriptional start sites (Brodsky et al.,

2005). In the absence of CREB binding to promoter IV in CREmKI

brains, we also observed a significant reduction in the level of Pol

II docked at the promoter (Figure 8D), consistent with the impair-

ment in activity-dependent transcription from Bdnf promoter IV

(Figures 2C, 3A, 4A). Pol II binding at the c-fos promoter was

not affected in CREmKI brains (Figure 8D), indicating that the

loss of polymerase binding in CREmKI brains is specific to pro-

moter IV. Together, these results indicate that the loss of binding

of a single sequence-specific factor, CREB, to Bdnf promoter IV

is sufficient to disrupt the assembly of the general transcriptional

activation machinery used by many transcription factors at Bdnf

promoter IV.

Finally, we asked whether loss of CREB binding to Bdnf

promoter IV affects the recruitment of other sequence-specific

transcription factors that are believed to cooperate with CREB

to mediate calcium-specific gene expression. We focused on

the calcium-regulated factor MEF2 because ongoing studies in

our lab have extensively validated the antibody directed against

MEF2D for use in ChIP (S.W. Flavell, T.K. Kim, and M.E.G.,

unpublished data). Using this antibody, we observed strong bind-

ing of MEF2D to Bdnf promoter IV in loxP control brains that is

significantly reduced in CREmKI littermate brains (Figure 8E). In

contrast, we detected enrichment of the Nr4a1 promoter, a

well-characterized target of MEF2 transcriptional regulation, in

anti-MEF2D immunoprecipitates from both CREmKI and loxP

control brains (Figure 8E), and little MEF2D binding to negative

control regions in the Bdnf and Nr4a1 genes in either CREmKI

or loxP control brains (Figure 8E and data not shown). Thus, the

loss of CREB binding to Bdnf promoter IV disrupts the binding

of MEF2D to Bdnf promoter IV as well. Our failure to observe

the binding of many components of the transcriptional activating

complex—CBP, polII, and MEF2D—to Bdnf promoter IV in

CREmKI brains does not reflect a general inability to immunopre-

cipitate promoter IV-containing gDNA fragments from CREmKI

brains because promoter IV fragments are found to be equally

enriched in CREmKI and loxP control chromatin immunoprecip-

itates collected with an antibody that recognizes histone H3,

a core structural component of chromatin (Figure 8F). Taken

together, our findings indicate that loss of CREB binding to

Bdnf promoter IV disrupts the multifactor transcriptional activat-

ing complex at promoter IV and suggest a new function for CREB

in nucleating the assembly of transcriptional complexes at its

target promoters.

DISCUSSION

Despite more than two decades of investigation into the program

of gene expression that is regulated by neuronal activity in the

brain, a significant gap persists in our understanding of the

biological significance of the activity-dependent component of
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gene transcription. In this study, the introduction of a subtle

mutation into the endogenous Bdnf gene in mice to disrupt the

ability of CREB to bind Bdnf promoter IV represents a powerful

approach for selectively evaluating the functional significance of

activity-dependent Bdnf transcription. We show that disruption

of the ability of CREB to regulate Bdnf promoter IV results in

an animal in which the activity-dependent transcription of Bdnf

is impaired in response to sensory experience-driven synaptic

activation in the intact brain. Using this animal, we find that activ-

ity-dependent Bdnf expression is required for the appropriate

development of inhibition in the cortex, but does not appear to

affect the survival or differentiation of GABAergic neurons. These

results demonstrate the biological importance of activity-regu-

lated gene transcription for the establishment of appropriate

connectivity in the nervous system. In addition, our findings

also indicate a requirement for promoter IV-derived Bdnf in the

development of inhibition in the cortex and thus provide insight

into the functional significance of the complex, multipromoter

organization of the Bdnf gene.

Most previous studies examining the role of activity-regulated

gene transcription in the nervous system have taken the

approach of disrupting either genes whose transcription, or tran-

scription factors whose function, is regulated by neuronal activ-

ity. For example, the observation of defects in synaptic plasticity

and learning in hypomorphic mutants of the transcription factor

CREB (Balschun et al., 2003; Bourtchuladze et al., 1994; Gass

et al., 1998) has been taken as evidence of the importance of

neuronal activity-dependent transcription in these adaptive

processes, since CREB is a well-established regulator of cal-

cium-dependent gene expression. Experiments with this design,

however, cannot easily dissociate the functions of a gene that are

due specifically to its regulation by neuronal activity from the

many other influences on its action. In the case of CREB, for

instance, interpretation of its role in synaptic and behavioral

plasticity is complicated by its essential role in neuronal survival

and maintenance (Mantamadiotis et al., 2002; Rudolph et al.,

1998). The current study is distinguished by our ability to make

use of the substantial existing mechanistic understanding of

Bdnf transcription to specifically disrupt neuronal activity-

dependent Bdnf transcription in vivo, via the genetic mutation

of the CREB-binding site in Bdnf promoter IV. This objective

can be achieved because, although CREB can be activated by

multiple signaling pathways including those mediated by rises

in cyclic AMP, exon IV-containing Bdnf transcripts are induced

selectively in response to the influx of extracellular calcium. Fur-

thermore, since promoter IV-derived Bdnf transcripts comprise

the majority of activity-induced Bdnf transcripts expressed in

the cortex, the disruption of activity-regulated promoter IV

activity results in a substantial impairment in overall neuronal

activity-dependent Bdnf transcription in the cortex.

Several phenotypic aspects of the CREmKI mutant animal

also suggest that the changes in the development and function

of its nervous system specifically reflect defects in the neuronal

activity-regulated expression of Bdnf. For instance, in contrast to

total Bdnf�/� knockout mice, which typically die in the first few

days of life (Ernfors et al., 1994; Jones et al., 1994), CREmKI mu-

tants are viable, fertile, and appear indistinguishable from control

littermates. In addition, at a gross anatomical level, CREmKI
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brains do not appear significantly different from wild-type or loxP

control littermate brains (Figure S4A), and cortical layering in

CREmKI brains appears normal (Figure S4B), suggesting that

impairment of activity-dependent promoter IV expression does

not have strong effects on neuronal survival. Furthermore,

whereas total Bdnf�/� null animals have a dramatic reduction in

the number of inhibitory neurons in the cortex (Jones et al., 1994),

we do not observe a change in inhibitory neuron number in

CREmKI cortex (Figures 7E and 7F), again indicating that not

all Bdnf-dependent phenotypes are affected by deficits in activ-

ity-dependent promoter IV activation. Like in Bdnf+/�

heterozygous mutants, the level of cortical BDNF protein in

CREmKI animals reared in standard housing conditions is

�50% of controls (Figure S3), and, like CREmKI animals,

Bdnf+/� heterozygotes also exhibit deficits in the development

of inhibition in the visual cortex (Abidin et al., 2008). However,

a simple 50% reduction in BDNF protein level cannot account

for the phenotype of the CREmKI animal because, unlike

Bdnf+/� heterozygous mutants that develop obesity by 3 months

of age (Kernie et al., 2000; Lyons et al., 1999), preliminary evalu-

ation suggests that CREmKI mutants do not exhibit changes in

body weight regulation (Figure S7). Taken together, these obser-

vations are consistent with the idea that the defects in cortical

inhibition seen in the CREmKI mutant reflect a requirement for

Bdnf function that depends specifically on the activity-depen-

dent expression of the gene. It is important to note that, since

activity-dependent Bdnf expression is significantly attenuated,

but not completely eliminated in the CREmKI animal, we cannot

exclude the possibility that many of the well-characterized

phenotypes of Bdnf�/� and Bdnf+/� mice that are not apparent

in the CREmKI animal may ultimately prove to also be dependent

on activity-dependent Bdnf transcription.

The finding that activity-dependent Bdnf expression is impor-

tant for the development of GABAergic synapses in the visual

cortex indicates an important role for activity-regulated gene

transcription in the control of cortical excitability. The establish-

ment and maintenance of appropriate excitatory-inhibitory

balance is critical to normal brain physiology and function; de-

fects in excitatory-inhibitory balance can lead to the emergence

of seizures and aberrant critical periods for cortical plasticity

(Hensch and Fagiolini, 2005; Sun, 2007). Previous studies have

demonstrated that a reduction in excitatory drive caused by

sensory deprivation leads to a decrease in GABA immunoreac-

tivity in the visual cortex (Benevento et al., 1995; Hendry and

Jones, 1986), suggesting the hypothesis that the level of neuro-

nal activity can adjust the strength of cortical inhibition to

maintain appropriate firing rates in cortical circuits. Since

BDNF levels can serve as a molecular ‘‘sensor’’ of global levels

of neuronal activity, it has been suggested that the induction of

Bdnf expression in response to increases in the level of neuronal

activity may act to dampen cortical excitability by promoting the

development and/or strengthening of inhibitory synapses in local

circuits (Genoud et al., 2004; Rutherford et al., 1997). However,

direct evidence that the neuronal activity-dependent regulation

of Bdnf expression controls the level of excitability of cortical

circuits has been lacking. Our finding that the disruption of

neuronal activity-regulated Bdnf expression impairs the devel-

opment of inhibitory synapses provides strong evidence in
support of this hypothesis. Since levels of Bdnf no longer func-

tion as an accurate sensor of neuronal activity in CREmKI brains,

cortical circuits appear to form as if under conditions of chronic

sensory activity deprivation and fail to develop the appropriate

level of inhibition. Important future experiments include pinpoint-

ing the source(s) of activity-dependent BDNF expression and

release, the cellular target(s) on which it acts, and understanding

whether activity-regulated BDNF functions equivalently at all

inhibitory inputs or may have local effects near specific or active

synapses.

In addition to demonstrating the biological significance of

activity-regulated Bdnf transcription for brain development and

function, our findings provide insight into the action of CREB in

the nervous system. We show that loss of the ability of CREB

to bind and regulate Bdnf promoter IV in CREmKI brains results

in defects in the development of cortical inhibition, implicating

CREB, or possibly its closely related family members CREM and

ATF-1, as having a previously unappreciated function in the

development of inhibition in the nervous system. Our results

with the CREmKI animal demonstrate that assessing the function

of transcriptional regulators via the mutation of their binding sites

in their target promoters is a powerful approach that can decon-

volve the many functions of the factor (Xiang et al., 2006). Addi-

tionally, in the case of a transcriptional regulator like CREB that

belongs to a multifactor family, the approach of mutating the fac-

tor binding site in target promoters of interest avoids a potential

complication of gene knockout studies, in which compensation

of one family member for another’s function is common.

Our results also provide insight into the role of CREB in the

formation of transcriptional regulatory complexes at gene pro-

moters. We find that loss of CREB binding in CREmKI brains

results in disruption of core components of the transcriptional

activating complex at Bdnf promoter IV, including CBP and PolII,

as well as loss of another sequence-specific transcription factor,

MEF2, that cooperates with CREB to regulate promoter IV activity

(S.W. Flavell, T.K. Kim, and M.E.G, unpublished data). These

results suggest a central function for CREB in nucleating the

assembly of the multifactor transcriptional regulatory complex

that mediates calcium-dependent exon IV transcription. This

idea is supported by our observation that additional mutation of

the CaRE1 and CaRE2 sites in addition to the CaRE3/CRE site

does not impair activity-dependent promoter IV induction signifi-

cantly more than mutation of the CREB-binding site alone.

Although there is evidence that CREB, both directly and through

its association with CBP, can bind and stabilize components of

the preinitiation complex (Lonze and Ginty, 2002), whether CREB

recruits other sequence-specific transcriptional activators to its

target promoters was less clear. One possibility is that the coacti-

vator CBP has additional functions as a molecular scaffold to

bridge the interactions among the many factors in a transcriptional

complex, such that recruitment of CBP by activated CREB leads

to the stabilization of additional sequence-specific factors at the

promoter. Alternatively, CREB may interact directly with other

sequence-specific factors to recruit them to promoter IV, as has

recently been shown for the transcriptional regulator MeCP2

(Chahrour et al., 2008). Further characterization of the multifactor

transcriptional complex, as well as putative changes in chromatin

state, at Bdnf promoter IV in CREmKI neurons may yield new
Neuron 60, 610–624, November 26, 2008 ª2008 Elsevier Inc. 621
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insight into the general mechanisms by which CREB coordinates

the stimulus-specific activation of its target promoters.

Taken together, our results demonstrate that the neuronal ac-

tivity-dependent component of gene expression is an important

functional mediator of the effects of neuronal activity in reorgan-

izing synaptic connectivity in the nervous system. It is remarkable

that the impairment in the ability of neuronal activity to trigger the

expression of just one of eight promoters of a single gene, Bdnf,

results in significant defects in the development of cortical

inhibition, highlighting the importance of the exquisite level of

transcriptional control over Bdnf expression in the nervous

system. Our finding that activity-regulated Bdnf expression is

an important mediator of the effect of neuronal activity on the

development of cortical inhibition suggests that, more generally,

a major function of the program of neuronal activity-regulated

gene expression may be to regulate the level of excitability of

cortical circuits. Aberrant excitatory-inhibitory balance in the cor-

tex can have significant consequences for the nervous system,

including the development of seizures and abnormal critical

periods for cortical plasticity, two common features of mental

retardation and neurodevelopmental and autism spectrum disor-

ders (Hensch and Fagiolini, 2005; Rubenstein and Merzenich,

2003). These observations highlight the importance of continued

investigation into the full program of neuronal activity-regulated

genes, and the synapse-to-nucleus signaling pathways that

regulate their expression, for understanding how experience

shapes the nervous system and how defects in this process

may lead to disorders of cognition.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for details of animal husbandry

and colony management, neuronal cell culture, immunocytochemistry, immu-

nohistochemistry, image analysis, and electrophysiology.

Generation of Bdnf pIV�/�, TMKI, CREmKI, and loxP Control Mice

See Supplemental Experimental Procedures for description of gene targeting.

The Bdnf pIV deletion spans basepairs �160 to +281 relative to the TSS. All

experiments were performed with animals in a sv129/C57BL/6 mixed genetic

background, with the mutation backcrossed into the C57BL/6 background

between four and six generations.

Visual Stimulation and Seizure Induction

Eight- to twelve-week-old adult mice reared in a 12 hr:12 hr light:dark cycle

were transferred into constant darkness for 14 days. Animals in the stimulated

(+) condition were exposed to light for 90 min. Seizures were induced in 8- to12-

week-old adult mice by intraperitoneal injection of kainic acid (20 mg/kg). At the

indicated times postinjection, mice were killed and the cortex isolated. See

Supplemental Experimental Procedures for details.

Gene Expression Analysis

cDNA was synthesized by reverse transcription of total RNA using oligo-dT

priming, and transcript levels were measured by quantitative real-time PCR

using SYBR Green detection. BDNF protein levels were quantified by

two-site ELISA. See Supplemental Experimental Procedures for details.

Chromatin Immunoprecipitation

For anti-CREB or anti-MEF2D ChIP, the antibody was preincubated with either

the antigen peptide against which the antibody was raised (negative control IP)

or an irrelevant peptide (experimental IP) prior to use in immunoprecipitation.

For all other factors, normal mouse or rabbit IgG was used for the negative

control IP. See Supplemental Experimental Procedures for details.
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The Supplemental Data include Supplemental Experimental Procedures and

figures and can be found with this article online at http://www.neuron.org/

supplemental/S0896-6273(08)00802-7.
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