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SUMMARY

The mechanisms by which proneural basic helix-
loop-helix (bHLH) factors control neurogenesis have
been characterized, but it is not known how they
specify neuronal cell-type identity. Here, we provide
evidence that two conserved serine residues on the
bHLH factor neurogenin 2 (Ngn2), S231 and S234,
are phosphorylated during motor neuron differentia-
tion. In knockin mice in which S231 and S234 of
Ngn2 were mutated to alanines, neurogenesis occurs
normally, but motor neuron specification is impaired.
The phosphorylation of Ngn2 at S231 and S234 facil-
itates the interaction of Ngn2 with LIM homeodomain
transcription factors to specify motor neuron identity.
The phosphorylation-dependent cooperativity be-
tween Ngn2 and homeodomain transcription factors
may be a general mechanism by which the activities
of bHLH and homeodomain proteins are temporally
and spatially integrated to generate the wide diversity
of cell types that are a hallmark of the nervous
system.

INTRODUCTION

A key unresolved question in developmental neurobiology is how

a relatively homogeneous population of neural stem cells/pro-

genitors gives rise to the diverse array of neuronal cell types

that are present in the mature nervous system. The differentia-

tion of neural progenitors to a specific type of neuron is known

to involve two distinct but coordinated steps: the commitment

to a neuronal fate and the establishment of cell-type identity

(Bertrand et al., 2002). The identification of the molecular mech-

anisms that control these two steps is the subject of active inves-

tigation and in particular has been studied during spinal motor

neuron development (Briscoe et al., 2000; Ericson et al., 1996;

Jessell, 2000; Lee and Pfaff, 2003; Novitch et al., 2001; Vallstedt

et al., 2001).

Spinal motor neurons are a group of cholinergic neurons

located in the ventral horn of the spinal cord that control locomo-

tion. The degeneration of motor neurons can lead to spinal mus-
cular atrophy (SMA) in infants and amyotrophic lateral sclerosis

(ALS) in adults (Cleveland, 1999; Monani, 2005). The treatment

and eventual prevention of these devastating disorders will likely

emerge from a better understanding of the molecular mecha-

nisms that control motor neuron differentiation.

The basic helix-loop-helix (bHLH) transcription factor neuro-

genin 2 (Ngn2) regulates both the commitment of progenitor cells

to a neuronal fate and the identity specification of spinal motor

neurons (Mizuguchi et al., 2001; Novitch et al., 2001; Scardigli

et al., 2001). While the mechanisms by which Ngn2 promotes

neurogenesis have been characterized, little is known about

how Ngn2 confers neuronal cell-type identity during spinal

cord development. Ngn1 and Ngn2, two mammalian orthologs

of the Drosophila proneural bHLH gene atonal, are expressed

in overlapping patterns throughout the developing nervous

system and act as important regulators of developmental neuro-

genesis (Fode et al., 2000; Ma et al., 1998). These factors have

well-characterized roles in the process of neuronal differentia-

tion—promoting cell cycle exit through upregulation of the

cyclin-dependent kinase inhibitor p27Kip1 (Farah et al., 2000;

Nguyen et al., 2006); inducing the expression of a cascade of

late differentiation bHLH factors and pan-neuronal genes such

as NeuroM, NeuroD, and b-III-tubulin (Fode et al., 1998; Ma

et al., 1998); suppressing gliogenesis by sequestering transcrip-

tional coactivators that are essential for glial differentiation (Nieto

et al., 2001; Sun et al., 2001); and promoting cortical neuron

migration and dendritic growth via the modulation of RhoA

GTPase activity (Ge et al., 2006; Hand et al., 2005). However,

detailed analysis of mouse strains deficient for Ngn1 and Ngn2

has revealed that these factors have additional functions during

development (Andersson et al., 2006; Hand et al., 2005; Kele

et al., 2006; Scardigli et al., 2001). In Ngn2 null mice, motor neu-

ron specification is compromised, whereas neurogenesis in the

spinal cord is normal, likely due to the continued presence of

Ngn1. By contrast, motor neuron differentiation in Ngn1 mutant

mice occurs normally (Scardigli et al., 2001). These findings sug-

gest that Ngn2 plays a unique and critical role in determining

motor neuron cell-type identity. However, the molecular mecha-

nisms used by Ngn2 to establish spinal motor neuron identity are

not well understood, and it is not clear how a single transcription

factor can regulate both a general process such as neurogenesis

and a more restricted process such as neuronal cell-type

specification.
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Recent advances have demonstrated that motor neuron

differentiation is regulated by a complex interaction between

extracellular and cell-intrinsic factors (Jessell, 2000). Secretion

of the morphogen Sonic Hedgehog (Shh) from the notochord is

essential for specifying multiple cell types in the ventral neural

tube, including motor neurons (Ericson et al., 1996; Jessell,

2000; Lu et al., 2002). Shh induces the region-specific expres-

sion of homeodomain transcription factors that play a key role

in the establishment of distinct progenitor domains that give

rise to the different types of neurons in the ventral neural tube

(Briscoe et al., 2000; Shirasaki and Pfaff, 2002). Proliferating pro-

genitors in different progenitor domains express unique combi-

nations of LIM homeodomain (LIM-HD) transcription factors

that function to establish neuronal cell-type identity as the pro-

genitors exit the cell cycle (Ericson et al., 1992; Sharma et al.,

1998; Tsuchida et al., 1994). The motor neuron progenitor

(pMN) domain is marked by the expression of LIM-HD factors

Lhx3 (Lim3) and Isl1, which form a transcription complex with

LIM-HD-interacting transcription cofactor NLI (Ldb1/Chip/

CLIM2) to establish motor neuron identity (Thaler et al., 2002).

The observation that certain LIM-HD factors are expressed in

proliferating progenitors during neurogenesis raises the possibil-

ity that these factors might work together with Ngn2 to couple

neurogenesis to the specification of neuronal cell-type identity

(Bertrand et al., 2002; Shirasaki and Pfaff, 2002). In support of

this idea, a recent study has shown that LIM-HD proteins can

act cooperatively with the bHLH transcription factor NeuroM to

promote motor neuron-specific gene HB9 expression (Lee and

Pfaff, 2003). However, the mechanisms that control the interac-

tion of LIM-HD proteins with proneural bHLH transcription factors

to ensure that these interactions occur at the right time and place

during spinal cord development remain to be characterized.

Here, we report that Ngn2 is phosphorylated on two key serine

residues, S231 and S234, during motor neuron differentiation.

We identify Shh as one of the extrinsic factors that regulate

this process by inducing the expression of Ngn2 and initiating

its subsequent phosphorylation by GSK3. The phosphorylation

of Ngn2 at S231 and S234 is not required for Ngn2-dependent

neurogenesis, but is critical for Ngn2-dependent motor neuron

identity establishment. Phosphorylation of S231 and S234 pro-

motes the interaction of Ngn2 with the LIM-HD transcription

complex and thus facilitates the ability of these transcription

factors to cooperatively promote motor neuron specification.

These findings suggest a mode of transcriptional regulation

that involves phosphorylation-dependent cooperativity between

bHLH and homeodomain transcription factors to control neuro-

nal cell-type specification during neural development.

RESULTS

Endogenous Ngn2 Is Phosphorylated during Motor
Neuron Differentiation
To study the molecular mechanisms by which Ngn2 regulates

neuronal cell-type specification, we hypothesized that extrinsic

signal-controlled modifications at key sites on Ngn2 might regu-

late Ngn20s ability to specify neuronal cell-type identity. In partic-

ular, we sought to identify amino acid sequences within Ngn2

that correspond to good consensus sites for protein phosphory-
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lation. Sequence alignment of Ngn2 across species shows that

there are two highly conserved proline-directed serine residues,

S231 and S234, at the C terminus of Ngn2 that are similar in

sequence to previously characterized sites of phosphorylation

(Figure 1A).

To test the possibility that Ngn2 is phosphorylated at these

sites, or potentially other sites as well, we immunoprecipitated

Ngn2 from E11.5 mouse embryonic neural tube and telenceph-

alon nuclear lysates with a rabbit anti-Ngn2 antibody that specif-

ically detects endogenous Ngn2 protein (see Figure S1 available

online). The immunoprecipitated proteins were separated by

SDS-PAGE and visualized by using the anti-Ngn2 antibodies

(Figure 1B). This analysis revealed that Ngn2 migrates on an

SDS polyacrylamide gel as multiple bands, suggesting that Ngn2

is post-translationally modified. Alkaline phosphatase treatment

of the immunoprecipitated Ngn2 resulted in the collapse of the

more slowly migrating bands to a single band, suggesting that

the slowly migrating bands are due to the phosphorylation of

Ngn2 (Figure 1B).

To determine whether Ngn2 is phosphorylated at S231 and

S234, we generated phospho-specific antibodies that recognize

Ngn2 only when it is phosphorylated at both S231 and S234

(anti-Ngn2 P-S231&S234 antibodies). Using nonphosphorylated

or phosphorylated peptides that span S231 and S234 of Ngn2

and full-length wild-type or mutant versions of Ngn2 in which

S231 and/or S234 were converted to alanines, we confirmed

that the affinity-purified anti-Ngn2 P-S231&S234 antibodies spe-

cifically recognize Ngn2 that is phosphorylated on both S231

and S234, but not Ngn2 that is not phosphorylated or only phos-

phorylated on either S231 or S234 (Figure S2). To test whether

Ngn2 is phosphorylated on S231 and S234 in vivo, we immuno-

precipitated endogenous Ngn2 from nuclear extracts of E11.5

mouse neural tube and telencephalon. Immunoprecipitated

Ngn2 was left untreated or treated with alkaline phosphatase,

fractionated on an SDS polyacrylamide gel, and then processed

for western blotting using the anti-Ngn2 P-S231&S234 anti-

bodies. We found that the anti-Ngn2 P-S231&S234 antibodies

only detect endogenous Ngn2 prior to alkaline phosphatase

treatment (Figure 1B). These findings suggest that endogenous

Ngn2 is phosphorylated at S231 and S234 in the embryonic

neural tube and/or telencephalon.

To investigate the temporal and spatial patterns of Ngn2 phos-

phorylation at S231 and S234, we stained coronal sections of

E10 mouse neural tubes with the anti-Ngn2 P-S231&S234 anti-

bodies. We focused our efforts on the developing neural tube

because previous studies have shown that Ngn2 knockout

mice display a defect in spinal motor neuron differentiation.

Intriguingly, immunostaining with the anti-Ngn2 P-S231&S234

antibodies revealed the presence of the S231 and S234 phos-

phorylated form of Ngn2 in the motor neuron progenitor domain

of the ventral neural tube (Figure 1C). The staining pattern

observed with the anti-Ngn2 P-S231&S234 antibodies partially

overlapped with that detected with antibodies to the motor

neuron progenitor marker Olig2 (Figures 1C–1E). The anti-Ngn2

P-S231&S234 antibodies specifically stained a subset of differ-

entiating motor neuron progenitors that express Ngn2 (stained

with a rat anti-Ngn2 antibody) (Figures 1F–1H). These findings

indicate that endogenous Ngn2 is phosphorylated at S231 and
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Figure 1. Neurogenin 2 Is Phosphorylated on S231 and S234 during

Spinal Motor Neuron Differentiation

(A) Sequence alignment showing that S231 and S234 located near the C

terminus of Ngn2 are highly conserved across species.

(B) Endogenous Ngn2 is phosphorylated on S231 and S234. Endogenous

Ngn2 was immunoprecipitated from E11.5 mouse neural tube and telenceph-

alon nuclear lysates with an anti-Ngn2 antibody crosslinked to protein A

beads. The immunoprecipitated proteins were left untreated or treated with

alkaline phosphatase, separated on SDS-PAGE, and blotted with the anti-

Ngn2 or the anti-Ngn2 P-S231&S234 antibodies.

(C–E) Endogenous Ngn2 is phosphorylated on S231 and S234 in spinal motor

neuron progenitors. Coronal neural tube sections from E10 mouse embryos

were stained with the anti-Ngn2 P-S231&S234 antibodies (red, [C]) and

a monoclonal antibody recognizing motor neuron progenitor-specific tran-

scription factor, Olig2 (green, [E]). Merged image of anti-Olig2 antibody and

anti-Ngn2 P-S231&S234 antibody staining appears as yellow (D).

(F–H) Ngn2 is phosphorylated on S231 and S234 in a subset of Ngn2-positive

motor neuron progenitors. Coronal neural tube sections from E10 mouse

embryos were stained with the anti-Ngn2 P-S231&S234 antibodies (red, [F])

and a rat anti-Ngn2 antibody (blue, [H]). Merged image of anti-Ngn2

P-S231&S234 antibody and anti-Ngn2 antibody staining appears as pink

(G). Panels (F)–(H) correspond to the boxed area in panel (C).
S234 in a large proportion of spinal motor neuron progenitors

in vivo and suggest that the phosphorylation of Ngn2 at these sites

could play a role in the process of motor neuron differentiation.

Spinal Motor Neuron Differentiation Is Defective
in Ngn2S231A&S234A Knockin Mice
To investigate the functional significance of Ngn2 phosphoryla-

tion at S231 and S234 during the course of normal development,

we generated a knockin mouse in which S231 and S234 in Ngn2

were converted to alanines (Ngn2S231&S234A) and thus refractory

to phosphorylation. We constructed a targeting vector in which

mutation of these two serines was introduced into the genomic

Ngn2 sequence and linked to a positive neomycin selection

marker (Neo) flanked by LoxP sites (Figure 2A). The targeting

vector successfully recombined with the endogenous Ngn2

locus in mouse ES cells, as revealed by Southern blotting of

genomic DNA obtained from targeted ES cells (Figure 2B). Two

independent ES cell lines that were successfully targeted at

the Ngn2 locus were used to generate the Ngn2S231&S234A

knockin mice following standard protocols.

A key to the utility of the Ngn2S231&S234A knockin mice for

studying the importance of S231 and S234 phosphorylation for

Ngn2 function is that the mutation of these amino acid residues

to alanines does not affect the level of Ngn2 expression. This was

tested by western blotting of cell extracts of E11.5 embryonic

neural tube and telencephalon obtained from wild-type and

Ngn2S231&S234A knockin mice. We found that the levels of Ngn2

protein expressed in wild-type and Ngn2S231&S234A knockin

mice are similar (Figure 2C). In contrast, western blotting of the

same lysates with the anti-Ngn2 P-S231&S234 antibodies

revealed the presence of the S231 and S234 phosphorylated

form of Ngn2 only in extracts prepared from wild-type mice

(Figure 2C), indicating that, in Ngn2S231&S234A knockin mice,

Ngn2 is not phosphorylated at these sites. In addition, the failure

of the anti-Ngn2 P-S231&S234 antibodies to detect Ngn2 by

western blotting of extracts from Ngn2S231&S234A knockin mice

further validates the specificity of the anti-Ngn2 P-S231&S234

antibodies for the S231 and S234 phosphorylated form of Ngn2.

Homozygous Ngn2S231&S234A knockin mice are viable and live

to adulthood. This is in striking contrast to homozygous Ngn2

knockout mice, which die at birth, most likely due to defects in

neurogenesis that lead to a loss of distal cranial sensory ganglia

in Ngn2 knockout mice (Figures 2D–2F) (Fode et al., 1998; Ma

et al., 1998). These findings suggest that the mutation of S231

and S234 to alanines does not disrupt all functions of Ngn2

and, in particular, may not affect the ability of Ngn2 to promote

neurogenesis. Consistent with these conclusions, we found

that wild-type Ngn2 and Ngn2S231&S234A bind to E-box-contain-

ing fragments of the NeuroD promoter and induce mRNA synthe-

sis from a NeuroD promoter-driven luciferase construct equally

well (Figures S3A–S3C). In addition, when transfected into

cortical progenitors, wild-type Ngn2 and Ngn2S231&S234A were

equally effective at inducing the differentiation of progenitors

into b-III tubulin-expressing neurons (cells staining positive

with anti-TuJ1 antibodies, Figures S3D–S3G). To investigate

whether Ngn2S231&S234A knockin mice have a defect in neuro-

genesis, we examined the generation of distal cranial sensory

ganglia by whole-mount neurofilament M staining and the
Neuron 58, 65–77, April 10, 2008 ª2008 Elsevier Inc. 67
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Figure 2. Motor Neuron Differentiation Is Defective in the Ngn2S231A&S234A Knockin Mice

(A) Schematic representation of the mouse genomic region bearing the Ngn2 gene (top), the Ngn2S231A&S234A knockin targeting vector (middle), and the Ngn2

locus after homologous recombination (bottom) with the targeting vector. The solid block represents the single exon encoding Ngn2, in which S231 and

S234 have been mutated to alanines in the Ngn2S231A&S234A knockin mice. 50 and 30 external probes are indicated and were used to detect the presence or

absence of the recombined locus by Southern hybridization analysis of NotI plus SpeI digested genomic DNA. The expected NotI-SpeI restriction endonuclease

fragments revealed by Southern blot analysis of wild-type (WT) and targeted knockin (KI) genomic DNA are shown. The positions of relevant restriction endonu-

clease sites are shown (B, BamHI; E, EcoRI).

(B) Southern blot analysis showing successful targeting of the Ngn2S231A&S234A knockin allele in mouse ES cells. Southern blot analysis of genomic DNA from

targeted ES cell clones #103 and #104 digested with NotI and SpeI and then probed with a 50 external probe that recognizes an 18.3 kb wild-type DNA fragment

and a 11.4 kb DNA fragment that would only be present if the homologous recombination targeting event has occurred.

(C) Absence of S231 and S234 phosphorylation in the Ngn2S231A&S234A knockin mice. Lysates prepared from E11.5 neural tubes and telencephalons of wild-type

or Ngn2S231A&S234A knockin mice were analyzed by immunoblotting using the anti-Ngn2 or the anti-Ngn2 P-S231&S234 antibodies. Note that the expression

level of the Ngn2 protein is not altered in the Ngn2S231A&S234A knockin mice compared to wild-type mice. Bottom panel shows immunoblot using antibodies

to actin as a loading control.

(D–I) In the distal cranial ganglia (indicated by the arrows in [D]–[F]) and dorsal root ganglia (indicated by the stars in [G]–[I]), neurogenesis is defective in Ngn2

knockout embryos, but not in wild-type or Ngn2S231A&S234A knockin embryos. E10.5 wild-type, Ngn2S231A&S234A knockin, or Ngn2 knockout embryos were sub-

jected to whole-mount immunostaining with a monoclonal anti-neurofilament M antibody (D–F). Neurofilament M staining is detected in the anlagen and the

nerve roots of the three distal cranial ganglia, including geniculate (VII) and petrosal (IX) and nodose (X) ganglia, in wild-type (panel [D]) and Ngn2S231A&S234A

knockin embryos (panel [E]). In comparison, neurofilament M staining is absent in the geniculate (VII) and petrosal (IX) ganglia in Ngn2 knockout embryos (panel

[F]). Neural tube sections at the hindlimb bud level from E10.5 wild-type (panel [G]), Ngn2S231A&S234A knockin (panel [H]), and Ngn2 knockout (panel [I]) embryos

were stained with the anti-TuJ1 antibodies recognizing a pan-neuronal marker b-III tubulin. No TuJ1 staining was detected in the DRG in Ngn2 knockout

embryos, whereas in wild-type and Ngn2S231A&S234A knockin embryos TuJ1 staining was present in the DRG.

(J–O) The number of spinal motor neurons is reduced and the number of V2 interneurons is significantly increased in the Ngn2S231A&S234A knockin mice com-

pared to wild-type mice. Immunostaining of E10.5 neural tube sections from wild-type (J and M) and Ngn2S231A&S234A knockin (K and N) mice with antibodies that
68 Neuron 58, 65–77, April 10, 2008 ª2008 Elsevier Inc.
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formation of dorsal root ganglia by immunostaining with anti-

TuJ1 antibodies. Neurogenesis in Ngn2S231&S234A knockin mice

appears normal in the distal geniculate (VII) and petrosal (IX)

ganglia (Figures 2D–2F) and the dorsal root ganglia (DRG) (Fig-

ures 2G–2I), where neurogenesis is dependent on Ngn2 and is

defective in Ngn2 knockout mice (Figures 2F and 2I) (Fode

et al., 1998; Ma et al., 1998, 1999). Together, these data suggest

that conversion of Ngn2 S231 and S234 to alanines does not

affect the transcription activation function of Ngn2 nor do these

mutations impair the ability of Ngn2 to induce neurogenesis.

Although neurogenesis appears largely normal in homozygous

Ngn2S231&S234A knockin mice, 56% of these mice were observed

to have a defect of forelimb clasping (Figure S4A), suggesting

that these mice might have impaired motor neuron function. To

examine this possibility, we stained brachial-level neural tube

sections from E10.5 wild-type and Ngn2S231&S234A knockin

mice with antibodies that recognize the motor neuron-specific

transcription factor HB9 (Figures 2J and 2K). Quantification of

the number of HB9-positive cells revealed significantly fewer

motor neurons in E10.5 Ngn2S231A&S234A knockin mice com-

pared to wild-type mice (wild-type, 164.5 ± 13.2; knockin,

124.2 ± 27.4, **p < 0.001, t test) (Figure 2L). To ensure that the

decrease in the number of motor neurons detected in

Ngn2S231&S234A knockin mice is not due to a decrease in the ex-

pression of the HB9 gene in otherwise normal motor neurons, we

stained the neural tube sections with antibodies that recognize

a second motor neuron marker, Isl1/2. We found that the number

of neurons expressing Isl1/2 is also markedly reduced in E10.5

neural tubes of Ngn2S231A&S234A knockin mice compared to

wild-type mice (wild-type, 164.1 ± 13.6; knockin, 125.3 ± 27.5,

**p < 0.001, t test). These findings suggest that the cell-type

specification of motor neurons is impaired in Ngn2S231&S234A

knockin mice. We found that the extent of motor neuron loss in

Ngn2S231&S234A knockin mice is similar in magnitude to that

seen in Ngn2 knockout mice as measured by Isl1/2-positive cells

in E10.5 neural tubes (Figure S4B), suggesting that the motor

neuron identity specification function of Ngn2 is dependent

upon the phosphorylation of Ngn2 on S231 and S234.

The reduction in the number of spinal motor neurons in

Ngn2S231A&S234A knockin mice could be due to a defect in neuro-

nal cell-type specification or an increase in the death of motor

neurons. Using antibodies that detect cleaved caspase3,

a marker of cells undergoing apoptosis, we failed to detect any

increase in the death of motor neurons in Ngn2S231&S234A

knockin mice compared to wild-type mice (data not shown). To

test whether the defect in motor neuron differentiation in

Ngn2S231A&S234A knockin mice reflects a defect in cell-type

specification, we examined the number of V2 interneurons gen-

erated in the knockin mice. In the ventral neural tube, motor neu-

rons and V2 interneurons are derived from adjacent progenitor

domains. The expression of both LIM-HD factors Lhx3 and Isl1

is required to establish motor neuron identity, while only Lhx3

is needed to promote V2 interneuron differentiation (Lee and
Pfaff, 2001; Thaler et al., 2002). Motor neuron progenitors

express both Lhx3 and Isl1, which cooperate to induce the

expression of HB9 to promote motor neuron differentiation and

repress V2 interneuron gene expression in motor neuron progen-

itors (Arber et al., 1999; Thaler et al., 1999). Because HB9

expression is compromised in Ngn2S231A&S234A knockin mice,

we hypothesized that derepression of V2 interneuron gene

expression might lead to ectopic V2 interneuron formation in

these mice. To test this possibility, we stained E10.5 brachial-

level neural tube sections with the V2 interneuron-specific

marker Chx10 (Figures 2M and 2N). When wild-type and

Ngn2S231A&S234A knockin mice were compared, we found that

the number of V2 interneurons in the Ngn2S231A&S234A knockin

mice was significantly increased (wild-type, 9.7 ± 4.5; knockin,

22.8 ± 2.6, ***p < 1.0E�6, t test) (Figure 2O). We conclude that

the decrease in the number of motor neurons in Ngn2S231&S234A

knockin mice is due to a defect in Ngn2-dependent motor neuron

cell-type specification that results in a conversion of some motor

neuron progenitors to the V2 interneuron fate. This conclusion is

supported by additional experiments described below that have

identified the mechanism by which Ngn2 specifies the formation

of motor neurons.

Phosphorylation on S231 and S234 of Ngn2 Promotes
the Cooperation between Ngn2 and LIM-HD Factors
to Establish Motor Neuron Identity
We hypothesized that Ngn2 might regulate the formation of

motor neurons by cooperating with LIM-HD factors Lhx3 and

Isl1 that are known to promote motor neuron differentiation

(Lee and Pfaff, 2003; Thaler et al., 2002). To test this possibility,

we first examined the expression patterns of Ngn2, Lhx3, and

Isl1/2 by immunostaining. We found that in mouse E10.5 ventral

neural tube Ngn2, Lhx3 and Isl1/2 were coexpressed in the neu-

ral progenitors migrating away from the ventricular zone (Figures

3A–3H). Then we assessed the ability of wild-type Ngn2 or phos-

phorylation-deficient Ngn2 mutants to cooperate with LIM-HD

factors in the promotion of motor neuron differentiation using

the chick embryo in ovo electroporation assay. By monitoring

the production of ectopic neuronal populations via immunostain-

ing with neuronal cell-type-specific markers, the chick neural

tube assay has been used to assess the neurogenic potential

of various transcription factors (Lee and Pfaff, 2003). We

introduced into the chick neural tube either wild-type Ngn2 or

mutants of Ngn2 in which S231 and/or S234 were converted to

alanines, together with LIM-HD factors Lhx3, Isl1, and adaptor

NLI. NLI is a widely expressed adaptor protein that contains an

N-terminal dimerization domain and C-terminal LIM interaction

domain (Agulnick et al., 1996; Jurata et al., 1996). NLI binds

directly to Isl1, which in turn interacts with Lhx3 to form a hex-

americ LIM-HD complex (2NLI:2Isl1:2Lhx3) to promote motor

neuron identity specification (Thaler et al., 2002). We monitored

the production of motor neurons by counting the number of

neurons that express the motor neuron marker MNR2, a chick
detect the motor neuron marker HB9 (green, [J and K]) or the V2 interneuron marker Chx10 (red, [M and N]). For the quantification, six brachial-level coronal

neural tube sections from each pair of wild-type or homozygous Ngn2S231A&S234A knockin embryos were analyzed. Data are from at least four pairs of embryos

with the similar number (32–35 pairs) of somites and are means ± standard deviation of the mean. HB9 (panel [L]): wild-type, 164.5 ± 13.2; knockin, 124.2 ± 27.4,

**p < 0.001, t test. Chx10 (panel [O]): wild-type, 9.7 ± 4.5; knockin, 22.8 ± 2.6, ***p < 1.0E-6, t test.
Neuron 58, 65–77, April 10, 2008 ª2008 Elsevier Inc. 69
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Figure 3. The Ngn2S231A&S234A Mutant Does Not Cooperate with

LIM-HD Factors to Specify Motor Neuron Identity
(A–H) Endogenous Ngn2, Isl1/2, and Lhx3 are coexpressed in differentiating

motor neuron progenitors. Coronal sections from E10.5 mouse neural tube

were stained with antibodies recognizing Ngn2 (red, [B]), Isl1/2 (green, [C]),

and Lhx3 (blue, [D]). The overlap of staining by all three antibodies in differen-

tiating motor neuron progenitors is shown in panels (A) and (E), as indicated by

white arrowheads in (E). The boxed areas in panels (A)–(D) are enlarged in

panels (E)–(H), respectively.

(I) The Ngn2S231A&S234A mutant is deficient in cooperating with LIM-HD factors

to promote motor neuron differentiation in the chick neural tube. DNA

constructs expressing wild-type or phosphorylation-deficient Ngn2, LIM-HD
70 Neuron 58, 65–77, April 10, 2008 ª2008 Elsevier Inc.
homeodomain protein that shares characteristics with mouse

HB9 (Tanabe et al., 1998). To distinguish the effects of exoge-

nously introduced Ngn2 from those of the endogenous Ngn2,

we focused our analysis on dorsal spinal cord progenitors, as

these cells have the potential to develop into motor neurons

but do not express endogenous transcription factors that pro-

mote motor neuron differentiation (Ericson et al., 1992; Sharma

et al., 1998). To increase the likelihood of coexpression of

Ngn2 and the LIM-HD factors, a chimeric molecule, DD-Isl1-

Lhx3, which has been demonstrated to function as a self-dime-

rizing analog of the LIM-HD complex (Lee and Pfaff, 2003), was

used in these experiments. As shown in Figure 3I, the expression

of wild-type Ngn2, together with the LIM-HD transcription com-

plex, effectively induces motor neuron differentiation in the dor-

sal spinal cord, as indicated by staining with the motor neuron-

specific marker MNR2 (Figure 3I). The mutation of S231 to an

alanine in Ngn2 leads to a significant reduction in the Ngn2-de-

pendent induction of motor neuron differentiation (Figure 3J). In

contrast to the effect of converting S231 to an alanine, the muta-

tion of S234 to an alanine has no significant effect on Ngn20s abil-

ity to cooperate with LIM-HD transcription factors. However, the

mutation of both S231 and S234 to alanines has a more dramatic

effect on Ngn2-induced motor neuron differentiation, suggesting

that the phosphorylation of Ngn2 at both S231 and 234 contrib-

utes to Ngn20s ability to cooperate with LIM-HD transcription

factors to promote motor neuron specification. We found that

endogenous motor neuron formation in the ventral chick neural

tube is not significantly affected by the expression of wild-type

or mutant Ngn2 (Figure 3I), suggesting that under these condi-

tions the phosphorylation-deficient Ngn2 mutants do not inter-

fere with endogenous motor neuron differentiation.

Phosphorylation on Ngn2 Affects Its Interaction
with the LIM-HD Transcription Complex
We next tested the possibility that in vertebrates Ngn20s ability to

cooperate with LIM-HD transcription factors to induce motor

neuron differentiation reflects a physical interaction of Ngn2

with components of the LIM-HD complex and investigated

whether this interaction is facilitated by the phosphorylation of

Ngn2 at S231 and S234. First, we asked whether Ngn2 copurifies

with components of the LIM-HD complex. Nuclear extracts from

E11.5 embryonic mouse neural tube and telencephalon were

fractionated on a Superdex 200 gel filtration column, and the

column fractions were subjected to immunoblotting with the

anti-Ngn2 antibodies. This analysis revealed that Ngn2 purifies

as part of a high molecular weight protein complex that is

complex (NLI-Isl1-Lh33) and EGFP were electroporated into embryonic chick

neural tubes. Cross-sections of electroporated chick neural tubes were

stained with a monoclonal anti-MNR2 antibody or the rabbit anti-Ngn2 anti-

bodies to detect ectopic motor neuron differentiation (above the white bars)

or the expression of Ngn2, respectively. EGFP expression was measured as

a control for the efficiency of electroporation in the assays. Images shown

are representative from at least three experiments.

(J) Quantitative analysis of MNR2-expressing motor neurons induced by wild-

type Ngn2 or phosphorylation-deficient Ngn2 mutants expressed together

with LIM-HD factors. Data are from at least three experiments and are means ±

standard error of the mean (SEM). Control, 2.7 ± 0.6; Ngn2, 22.7 ± 5.3;

Ngn2S234, 22.3 ± 4.1; Ngn2S231A, 7.5 ± 3.5; Ngn2S231A&S234A, 3.3 ± 1.8.
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approximately 600 kD in size (Figure S5). Western blot analysis

showed that the adaptor protein NLI, LIM-HD factors Isl1/2,

and Lhx3 copurify with Ngn2, suggesting that these proteins

might interact with one another (Figure S5). The finding that

Ngn2 and NLI interact was corroborated by coimmunoprecipita-

tion experiments. When the anti-Ngn2 antibodies were incubated

with E11.5 mouse telencephalon and neural tube nuclear ex-

tracts, we found by western blotting with an anti-NLI antibody

that NLI coimmunoprecipitates with Ngn2 (Figures 4A and 4B).

This interaction is specific, as no NLI was detected in the immu-

noprecipitates when the same nuclear extracts were immunopre-

cipitated using control antibodies. The coimmunoprecipitation of

NLI with Ngn2 appears to be facilitated by the phosphorylation of

Ngn2 at S231 and S234. We found that when Flag-tagged Ngn2

was transfected into HEK293T cells together with myc-tagged

NLI, NLI was coimmunoprecipitated with wild-type Ngn2

(Figure 4C). By contrast, Ngn2DC166, in which the C terminus

of Ngn2 beyond the bHLH domain was removed, or the phos-

phorylation-deficient Ngn2S231&S234A, both coimmunoprecipi-

tated NLI to a much lesser extent than the wild-type Ngn2 (Fig-

ures 4C–4F). These findings suggest that the phosphorylation

of Ngn2 at S231 and 234 facilitates the interaction of Ngn2 with

NLI, thereby promoting motor neuron differentiation.

Ngn2 Is Phosphorylated on S231
and S234 by GSK3 In Vitro
Because the phosphorylation of S231 and S234 of Ngn2 plays

a key role in promoting the development of motor neurons, we

sought to identify the kinases that catalyze these events. We

used Scansite 2.0, a computer program that identifies consen-

sus sequences for phosphorylation by different protein kinases.

This analysis suggested that the amino acids surrounding S231

and S234 of Ngn2 form a good consensus sequence for phos-

phorylation by the proline-directed kinase glycogen synthase

kinase 3 (GSK3). GSK3 is a ubiquitously expressed serine/

threonine kinase that has previously been implicated in sonic

hedgehog (Shh) signaling in Drosophila (Jia et al., 2002; Price

and Kalderon, 2002). Given the key role that Shh plays in motor

neuron development in vertebrates, and the finding that the

phosphorylation of Ngn2 at putative GSK3 phosphorylation sites

promotes motor neuron differentiation, we asked whether GSK3

phosphorylates Ngn2 to specify motor neuron cell-type identity.

To test whether GSK3 phosphorylates Ngn2 at S231 and/or

S234 in vitro, we generated in bacteria recombinant wild-type

and mutant forms of Ngn2 in which S231 and/or S234 were re-

placed by alanine residues. Wild-type Ngn2 was incubated with

purified wild-type GSK3, or heat-inactivated GSK3 kinase, and

g-32P-ATP (Ma et al., 2000). We found that wild-type GSK3, but

not the inactivated GSK3, phosphorylates Ngn2 (Figure 5A). In

addition, when recombinant wild-type and mutant forms of

Ngn2 were phosphorylated by GSK3 in an in vitro kinase assay,

western blot analysis with the anti-Ngn2 P-S231&S234 anti-

bodies revealed that GSK3 phosphorylates Ngn2 at S231 and

S234 (Figures 5B and 5C). The Ngn2 that is phosphorylated on

both S231 and S234 migrates as two distinct bands on SDS poly-

acrylamide gel (Figures 5B and 5C), suggesting that GSK3 phos-

phorylates Ngn2 on additional sites besides S231 and S234. The

occurrence of the additional phosphorylation events may vary
under different experimental conditions and consequently affect

the migration pattern of Ngn2, which may in part account for the

fact that endogenous Ngn2 from mouse neuronal lysates is

observed to migrate differently in different experimental contexts.

Endogenous Ngn2 Is Phosphorylated by GSK3 on S231
and S234 during Motor Neuron Differentiation In Vivo
To examine whether GSK3 mediates the phosphorylation of

Ngn2 on S231 and S234 in cells, we generated motor neuron

progenitors from mouse embryonic stem (ES) cells by exposing

the ES cells to retinoic acid (RA) and Shh. The pathway of motor

neuron generation from ES cells recapitulates the steps of motor

neuron differentiation in vivo (Wichterle et al., 2002). Motor neu-

ron progenitors derived from ES cells can integrate into existing

neuronal circuits and form functional synapses that innervate

limb muscles. Thus, ES cell-derived motor neuron progenitors

Figure 4. Phosphorylation of Ngn2 on S231 and S234 Affects the

Interaction between Ngn2 and the LIM-HD Transcription Complex

(A and B) Coimmunoprecipitation of endogenous Ngn2 and NLI from nuclear

extracts prepared from E11.5 mouse neural tube and telencephalon using

the anti-Ngn2 antibody. NLI can be immunoprecipitated by the anti-Ngn2

antibody, but not by the preimmune serum or a control antibody that recog-

nizes serum-responsive factor (SRF).

(C–F) Phosphorylation of Ngn2 at S231 and S234 facilitates the interaction

between Ngn2 and NLI. HEK293T cells were transfected with Myc-tagged

NLI together with either Flag-tagged full-length Ngn2, Flag-tagged

Ngn2DC166, in which the C terminus of Ngn2 beyond the bHLH domain was

removed, or Flag-tagged phosphorylation-deficient Ngn2S231&S234A. The

transfected cells were lysed, and the lysates were subject to immunoprecipi-

tation with an anti-Flag antibody. The precipitated complexes were analyzed

by immunoblotting using an anti-Myc antibody to detect the coimmunopreci-

pitated NLI protein (C). The expression levels of the various forms of Ngn2 were

similar in 293T cells, as shown by immunoblotting of the cell lysates using the

anti-Flag antibody (D). The phosphorylation of Ngn2 at S231 and S234 in 293T

cells was confirmed by immunoblotting of the cell lysates with the anti-Ngn2

P-S231&S234 antibodies (E). The expression level of NLI in each sample

was similar, as indicated by western blotting with an anti-Myc antibody (F).
Neuron 58, 65–77, April 10, 2008 ª2008 Elsevier Inc. 71
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Figure 5. GSK3 Phosphorylates Ngn2 on

S231 and S234, and Sonic Hedgehog

Induces Ngn2 Expression during Motor

Neuron Differentiation

(A) GSK3 phosphorylates Ngn2 in vitro. Wild-type

recombinant Ngn2 protein generated in bacteria

was incubated with purified active or heat-inacti-

vated GSK3 kinase and g-32P-ATP. Samples

were separated on SDS-PAGE, and radiolabeled

Ngn2 was detected by autoradiography.

(B and C) GSK3 phosphorylates Ngn2 on S231 and

S234 in vitro. Recombinant wild-type Ngn2 and the

Ngn2S231&S234A mutant were in vitro phosphory-

lated by GSK3 and immunoblotted with the anti-

Ngn2 (B) or anti-Ngn2 P-S231&S234 (C)antibodies.

(D) The phosphorylation of endogenous Ngn2 on

S231 and S234 is reduced by the GSK3 inhibitor

6-bromoindirubin in ES cell-derived motor neuron

progenitors. ES cells were differentiated into

motor neuron progenitors in the absence or pres-

ence of 100 nM GSK3 inhibitor 6-bromoindirubin.

The expression level and phosphorylation status

of Ngn2 in these ES cell-derived motor neuron

progenitors were analyzed by western blotting with

the anti-Ngn2 or the anti-Ngn2 P-S231&S234

antibodies.

(E) The phosphorylation of Ngn2 on S231 and S234

was significantly decreased in ES cell-derived motor

neuron progenitors expressing GSK3 shRNA. ES

cells were transfected with an shRNA construct

that targets both GSK3a and GSK3b or with

a construct encoding a scrambled hairpin and then

differentiated into motor neuron progenitors. The

expression level of GSK3 and Ngn2 and the phosphorylation status of Ngn2 were analyzed by immunoblotting with anti-GSK3a, anti-GSK3b, anti-Ngn2, or anti-Ngn2

P-S231&S234 antibodies.

(F) Shh induces Ngn2 expression in ES cell-derived motor neuron progenitors, and the induced Ngn2 is phosphorylated at S231 and S234. ES cell-derived motor neuron

progenitors were treated with 1 mM Shh for 30 min or left untreated. The expression level and phosphorylation status of Ngn2 and GSK3b were assessed by western

blotting with anti-Ngn2, anti-Ngn2 P-S231&S234, anti-GSK3b, and anti-GSK3b P-S9 antibodies, respectively. Bottom panel shows western blot with antibodies recog-

nizing actin as a loading control.
are an excellent model for studying the signal transduction

mechanisms that regulate motor neuron differentiation. Using

an ES cell line that expresses EGFP under the control of motor

neuron-specific promoter HB9, we successfully differentiated

ES cells into EGFP-positive motor neuron progenitors. After

differentiating for 2 days in the presence of RA and Shh, the

ES cell-derived motor neuron progenitors express Ngn2 that is

phosphorylated at S231 and S234, as detected by western blot-

ting with the anti-Ngn2 P-S231&S234 antibodies (Figure 5D). To

test whether GSK3 phosphorylates Ngn2 in these developing

motor neurons, we differentiated ES cells into motor neuron

progenitors in the presence of the GSK3 inhibitor 6-bromoindir-

ubin-30-acetoxime and assessed the phosphorylation status of

Ngn2. We found that in the presence of 100 nM 6-bromoindiru-

bin-30-acetoxime, Ngn2 is expressed at normal levels, but its

phosphorylation at S231 and S234 is significantly reduced

(Figure 5D). This suggests that GSK3 may phosphorylate Ngn2

on S231 and S234 during the differentiation of ES cells into motor

neurons.

To further investigate the requirement of GSK3 for phosphor-

ylating Ngn2 at S231 and S234, we knocked down the expres-

sion of endogenous GSK3 in mouse ES cells using vector-based

RNAi constructs (Kim et al., 2006; Yu et al., 2003) and examined
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Ngn2 phosphorylation in these cells after exposure of the cells to

RA and Shh for 2 days, a procedure that would normally induce

Ngn2 expression. In vertebrates, there are two GSK3 isoforms,

GSK3a and GSK3b, which have similar structures and functions

(Doble and Woodgett, 2003; Jope and Johnson, 2004). By

western blotting with an anti-GSK3a antibody and an anti-GSK3b

antibody, we found that both GSK3a and GSK3b were effectively

knocked down in ES cell-derived motor neuron progenitors by

an shRNA that targets both isoforms of GSK3, but not by the

scrambled hairpin. The knockdown effects of the RNAi construct

persisted for more than 72 hr after transfection, allowing enough

time for the ES cells to differentiate into Ngn2-expressing

progenitors. We found that when the expression of GSK3 was

effectively reduced, the phosphorylation of Ngn2 at S231 and

S234, but not the level of Ngn2 expression, was significantly

decreased compared to cells transfected with the scrambled

shRNA (Figure 5E). These findings suggest that GSK3 mediates

Ngn2 phosphorylation at S231 and S234, thereby promoting

the association of Ngn2 with the LIM-HD factors during motor

neuron differentiation. In addition to phosphorylating Ngn2,

GSK3 has previously been suggested to phosphorylate Xenopus

NeuroD to control the timing of neuronal differentiation in Xeno-

pus retina (Moore et al., 2002). Given the diverse roles of GSK3 in
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development, it is possible that GSK3 regulates other aspects of

motor neuron differentiation in addition to its effect on Ngn2

phosphorylation. Whether GSK3 phosphorylation of neuroge-

nic bHLH factors is a general mechanism for controlling their

functions awaits further study.

Given the critical role of GSK3/Shaggy in mediating Shh sig-

naling in Drosophila (Jia et al., 2002; Price and Kalderon, 2002),

and our observation that GSK3 phosphorylates Ngn2 on S231

and S234 during motor neuron differentiation, we considered

the possibility that Shh might be one of the extrinsic factors

that regulate the expression and/or phosphorylation status of

Ngn2 at S231 and S234. To test this idea, mouse ES cells

were differentiated into motor neuron progenitors and then stim-

ulated with Shh. Nuclear lysates were prepared from these cells

before and after Shh treatment, and the Ngn2 expression level

and phosphorylation status were assessed. We found that expo-

sure to Shh led to a significant increase in Ngn2 protein in motor

neuron progenitors, and the resulting Ngn2 was phosphorylated

on both S231 and S234 (Figure 5F). Shh had no effect on the

activity of GSK3 (Figure 5F), as indicated by western blot analysis

with a phospho-specific antibody recognizing phosphorylation

on S9 of GSK3b. The phosphorylation of GSK3b at S9 has

been shown to inversely correlate with GSK3b activity (Doble

and Woodgett, 2003; Jope and Johnson, 2004). These findings

suggest that Shh and GSK3 may function sequentially to coordi-

nate motor neuron differentiation. Shh induces Ngn2 expression,

and newly synthesized Ngn2 is then phosphorylated by GSK3 on

S231 and S234. The phosphorylation of Ngn2 facilitates the in-

teraction of Ngn2 with LIM-HD factors that together activate

genes that promote motor neuron specification.

DISCUSSION

Proneural bHLH transcription factors regulate many aspects

of neural development, including neurogenesis, the timing of

gliogenesis, and neuronal cell-type identity specification (Gowan

et al., 2001; Guillemot et al., 1993; Hand et al., 2005; Johnson

et al., 1990; Ma et al., 1996; Muroyama et al., 2005; Scardigli et al.,

2001; Sun et al., 2001). While the mechanisms by which bHLH

factors promote neurogenesis have been characterized, little

is known about how these factors specify neuronal cell-type

identity. In this study, we have examined the mechanism by

which Ngn2 promotes motor neuron cell-type specification.

We find that Ngn2 is phosphorylated on two highly conserved

residues, S231 and S234, by GSK3 during the formation of spinal

motor neurons. These phosphorylation events promote the inter-

action of Ngn2 with LIM-HD transcription factors and thereby

specify the formation of motor neurons. These findings have

led us to propose a mechanism of transcription factor action

termed phosphorylation-dependent cooperativity that may allow

a relatively small number of transcription factors to contribute to

the generation of a diverse array of neuronal cell types. Phos-

phorylation-dependent cooperativity may be regulated by extrin-

sic factors, such as growth factors, axon guidance factors, and

neurotrophic factors, so that transcription factor function is

controlled temporally and spatially, allowing a wide variety of

neuronal cell types to be specified correctly and at the right

time and place during nervous system development.
Phosphorylation on the C Terminus of Ngn2 Is Critical
for Its Function in Specifying Neuronal Cell-Type
Identity but Not in Promoting Neurogenesis
Proneural bHLH factors, such as Ngn2, promote neurogenesis

by activating cascades of gene expression. The ability of Ngn2

to promote neurogenesis is dependent on the bHLH domain of

Ngn2, which mediates both Ngn20s interaction with ubiquitously

expressed E-proteins, and the binding of the Ngn2/E-protein di-

mer to E-boxes within the promoters of Ngn2 target genes (Ber-

trand et al., 2002; Sun et al., 2001). Here, we demonstrate that

phosphorylation of S231 and S234 within the C terminus of

Ngn2, a region that is completely separate from the Ngn2 bHLH

domain, is critical for neuronal cell-type specification. This is sug-

gested by the findings that, in Ngn2S231A&S234A knockin mice,

motor neuron identity establishment is compromised, and there

is a significant increase in the number of V2 interneurons pro-

duced. Strikingly, the conversion of Ngn2 S231 and S234 to

alanines has no effect on the ability of Ngn2 to promote neuro-

genesis, indicating that the neurogenesis and neuronal cell-

type specification functions of Ngn2 are separable. Thus, it is

possible that within a given motor neuron progenitor only a frac-

tion of the total Ngn2 is phosphorylated at S231 and S234. The

unphosphorylated Ngn2 in a motor neuron progenitor may

regulate the expression of genes that control neurogenesis, while

Ngn2 phosphorylated at S231 and S234 is targeted to the pro-

moters of genes that specify motor neuron identity (Figure 6).

Additional post-translational modifications of Ngn2 within its

C-terminal domain may contribute to the generation of the

diverse cell types that are present in the nervous system. Consis-

tent with this idea, there are other evolutionarily conserved ser-

ines, such as S215 and S205, within the C terminus of Ngn2

that may be phosphorylated. It was recently reported that tyro-

sine residue Y241 on Ngn2, when mutated to a phenylalanine,

results in defects in cortical neuron migration and dendritic

arborization (Hand et al., 2005). These defects may result from

a loss of phosphorylation of Ngn2 at Y241. It remains to be de-

termined whether the phosphorylation of Ngn2 at Y241, along

with S231 and S234 phosphorylation, is a requisite step for the

interaction of Ngn2 with LIM-HD proteins in motor neuron differ-

entiation or whether the phosphorylation of Ngn2 at Y241 pro-

motes Ngn20s interaction with a distinct class of transcription

factors to specify other neuronal subtypes. Nevertheless, our

findings indicate that the differential phosphorylation of Ngn2

allows this transcription factor to regulate distinct aspects of

neuronal differentiation.

The importance of the phosphorylation of Ngn2 at S231 and

S234 for motor neuron specification was clearly demonstrated

by the analysis of Ngn2S231A&S234A knockin mice. We found a sig-

nificant loss of motor neurons and a substantial increase in the

number of V2 interneurons in the knockin embryos. This neuronal

cell-type identity switch in Ngn2S231A&S234A knockin mice is most

likely due to the conversion of motor neurons to V2 interneurons,

resulting at least in part from a failure of Ngn2 to cooperate with

LIM-HD proteins to activate the expression of HB9, which is

required to prevent a motor neuron progenitor from adapting

the V2 interneuron fate. The decreased expression of both

HB9 and Isl1/2 in the spinal cord of Ngn2S231A&S234A knockin

mice and the increased expression of V2 interneuron markers
Neuron 58, 65–77, April 10, 2008 ª2008 Elsevier Inc. 73
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suggest that the defect in motor neuron generation is more

global than simply the loss of a few motor neuron markers.

It is notable that a subset rather than the entire population of

motor neurons is lost in Ngn2S231A&S234A knockin mice. One pos-

sible explanation for the partial loss of motor neurons in

Ngn2S231A&S234A knockin mice is that phosphorylation of Ngn2

on S231 and S234 is only required for the identity specification

of a subgroup of motor neurons that eventually assemble into

a specific motor column, for example the medial half of Median

Motor Column (MMCm) that innervates axial muscles (Shirasaki

and Pfaff, 2002). Interestingly, motor neurons from MMCm

are known to express Lhx3 and Isl1, which synergize with

Ngn2 to specify motor neuron identity. Further analysis of

Ngn2S231A&S234A knockin mice using markers that are selective

to specific motor columns, as well as tracing of the trajectories

of motor neurons in the knockin mice, should allow us to deter-

mine the extent of the motor neuron defects that occur in the

absence of Ngn2 phosphorylation at S231 and S234.

An alternative explanation for the partial loss of motor neurons

in Ngn2S231A&S234A knockin mice is that, while Ngn2 plays a key

role in motor neuron differentiation, in the absence of Ngn2 S231

and S234 phosphorylation, other bHLH factors, such as Neu-

roM, that typically act later than Ngn2 during development are

able to compensate for Ngn2 and cooperate with LIM-HD fac-

tors. Consistent with this possibility, a previous study has shown

that NeuroM, when overexpressed in the chick neural tube,

can cooperate with LIM-HD proteins to promote motor neuron

differentiation (Lee and Pfaff, 2003).

Phosphorylation-Dependent Cooperativity
between Ngn2 and LIM-HD Factors
We have shown that Ngn2 phosphorylation at S231 and S234

regulates neuronal cell-type specification by promoting the inter-

Figure 6. Model for Phosphorylation-Dependent Cooperativity

between Ngn2 and LIM-HD Transcription Factors to Specify Motor

Neuron Identity

(A) To promote neurogenesis, Ngn2 dimerizes with E-proteins to bind to

consensus DNA motif E-boxes in target promoters and thereby activate the

expression of genes such as NeuroM that promotes neurogenesis.

(B) During motor neuron identity specification, Ngn2 is phosphorylated on S231

and S234 by GSK3. These phosphorylation events facilitate the interaction

between Ngn2 and LIM-HD transcription complexes to activate the expression

of motor neuron-specific genes such as HB9. The Ngn2 S231&S234 phos-

phorylation events are not required for Ngn2 induction of neurogenesis.
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action of Ngn2 with LIM-HD proteins and that this complex then

activates the expression of motor neuron genes such as HB9. It

will be of interest to characterize the nature of the interaction

between Ngn2 and LIM-HD factors, as it appears to represent

a new mode of phosphorylation-dependent protein-protein in-

teraction. It is through their ability to trigger the phosphorylation

of transcription factors that cell-extrinsic factors such as growth

factors typically regulate cell-intrinsic programs of gene expres-

sion that mediate the cell’s response to environmental signals.

Growth factor-induced phosphorylation has previously been

shown to modulate the activity of transcription factors by affect-

ing their nuclear localization (Brunet et al., 1999), modulating

their stability (Song et al., 1998), affecting their ability to interact

with DNA, recruiting transcription cofactors (Chrivia et al., 1993),

or switching a transcription repressor to an activator (Ju et al.,

2004). Our finding that phosphorylation can also promote coop-

erative interactions between distinct classes of transcription fac-

tors suggests a mechanism by which a relatively small number of

transcription factors and cell-extrinsic factors might potentially

specify a wide variety of neuronal cell types in the nervous sys-

tem. The phosphorylation of Ngn2 at different sites within its C

terminus may allow Ngn2 to mix and match with distinct classes

of homeodomain transcription factors, thus greatly expanding

the potential diversity of neuronal cell types generated.

How this might work is suggested by the nature of the interac-

tion that the S231&S234-phosphorylated form of Ngn2 makes

with the LIM-HD complex. In motor neuron progenitors, the

LIM-HD complex is composed of six proteins (2NLI:

2Isl1:2Lhx3). We have found that the LIM domain-binding

adaptor protein NLI interacts with the S231&S234-phosphory-

lated form of Ngn2. As NLI is known to associate with a number

of transcription factors in addition to Isl1 and Lhx3 (Agulnick

et al., 1996; Bach et al., 1997; Chen et al., 2002; Jurata et al.,

1996; Ramain et al., 2000; Torigoi et al., 2000), this suggests

that NLI may function to link C-terminal-phosphorylated Ngn2

with a variety of different transcription factors in different regions

of the nervous system. This might then confer upon Ngn2 the

ability to specify distinct neuronal cell types depending on which

transcription factors are coexpressed with Ngn2 and NLI and

whether Ngn2 is phosphorylated at S231 and S234 or other sites

within its C terminus. In support of this idea, we have found that

Ngn2 is phosphorylated at S231 and S234 in multiple regions of

the brain in addition to the spinal cord. Future experiments will

determine whether in these various brain regions Ngn2 phos-

phorylation at S231 and S234, or at other sites, facilitates Ngn20s

cooperation with novel families of transcription factors to specify

distinct types of neurons.

Regulation of GSK3-Mediated Phosphorylation of Ngn2
Given the importance of phosphorylation-dependent coopera-

tivity between Ngn2 and LIM-HD factors for motor neuron devel-

opment, we investigated the signal transduction pathways that

control this process. We identify Shh as an extrinsic factor that

promotes the cooperativity between Ngn2 and the LIM-HD com-

plex by inducing Ngn2 expression. GSK3 then phosphorylates

Ngn2 at S231 and S234. Additional mechanisms may control

GSK3 activity so that Ngn2 is phosphorylated at the right time

and place during motor neuron development and the level of
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Ngn2 phosphorylation is properly controlled. The activity of

GSK3 is known to be negatively and positively regulated by

extracellular stimuli (Doble and Woodgett, 2003; Jope and John-

son, 2004). It will be of interest to determine whether factors such

as Wnts, bone morphogenic proteins (BMPs) (Chizhikov and

Millen, 2005; Logan and Nusse, 2004), or fibroblast growth

factors (FGFs) (Jessell, 2000; Shirasaki et al., 2006), each of

which are known to regulate both GSK3 function and spinal

cord development, play a role in regulating GSK3 phosphoryla-

tion of Ngn2.

Conclusion
In this study, we provide genetic, biochemical, and cell-biologi-

cal evidence for a mechanism of transcriptional regulation that

we have termed phosphorylation-dependent cooperativity.

Through phosphorylation-dependent cooperativity, Ngn2 and

LIM-HD factors regulate the identity specification of motor neu-

rons. However, given that there are well-conserved consensus

sites for phosphorylation in the C-terminal regions of proneural

bHLH factors in addition to Ngn2, it is likely that phosphoryla-

tion-dependent cooperativity is a general mechanism by which

cell-extrinsic factors send signals to bHLH factors to promote

the development of diverse cell types in the nervous system.

EXPERIMENTAL PROCEDURES

Generation of Ngn2S231A&S234A Knockin Mice

The Ngn2S231A&S234A knockin targeting vector was constructed by introducing

mutations into the cloned genomic Ngn2 sequence using QuikChange (Strata-

gene) to convert S231 and S234 into alanines and by placing a loxP/PGKneo/

loxP cassette into an EcoRI site at the end of the single exon that encodes

Ngn2. A silent mutation (S218S) was also introduced to create a SacI site

nearby to facilitate genotyping. The Ngn2S231A&S234A/loxP/PGKneo/loxP cas-

sette was placed between a 5.6 kb 50 arm and a 2.2 kb 30 arm that were gen-

erated by PCR using wild-type 129SVJ ES cell genomic DNA as template. The

targeting construct was electroporated into 129SVJ ES cells and selected with

G418. Eighteen ES cell clones carrying both the correctly targeted

Ngn2S231A&S234A mutation and the loxP/PGKneo/loxP cassette were identified

out of 208 clones (9.1%) by Southern blot analysis using external probes.

Seven ES cell clones carrying wild-type Ngn2 and the loxP/PGKneo/loxP

cassette were identified out of 208 clones (3.4%). Two correctly recombined

independent clones of ES cells were injected into C57BL/6J blastocysts to

generate germline chimeric founders. One ES cell clone carrying a loxP/

PGKneo/loxP cassette lacking the Ngn2S231A&S234A mutation was also injected

to generate a control mouse line. Germline-transmitted chimeras were mated

with transgenic mice expressing Cre recombinase under the control of ubiqi-

tiously expressing E2A promoter to remove the PGKneo cassette. Mutant mice

were genotyped by detecting the presence of the SacI site, the S231A&S234A

point mutations, and the LoxP site from PCR products covering the

Ngn2S231A&S234A/loxP region.

In Ovo Electroporation

Chick eggs (Charles River) were incubated in a 38�C humidified chamber, and

embryos were staged according to Hamburger and Hamilton (HH). DNA con-

structs were injected into the lumens of HH stage 10 chick embryonic neural

tubes. Electroporation was performed using a square wave electroporator

(BTX). Electroporated embryos were incubated to allowed further develop-

ment, and incubated chicks were harvested and analyzed at HH stage 15 as

previously described (Thaler et al., 2002).

Differentiation of Mouse ES Cells into Motor Neuron Progenitors

Details can be found in the Supplemental Data.
Immunohistochemistry

Mouse embryos were fixed by immersion in 4% paraformaldehyde from 1 to

2 hr at 4�C, depending on the age. The following primary antibodies were

used: guinea pig anti-Chx10 (1:8000, Dr. Samuel L. Pfaff), rabbit anti-Hb9

(1:8000, Dr. Samuel L. Pfaff), rabbit anti-Isl1/2 (1:2500, Dr. Samuel L. Pfaff),

rabbit anti-NLI (1:1000, Dr. Gordon N. Gill), mouse anti-Olig2 (1:1000,

Dr. Charles D. Stiles), rabbit anti-GSK3a (1:500, Cell Signaling), rabbit anti-

GSK3b (1:1000, Cell Signaling), mouse monoclonal (mAB) anti-TuJ1 (1:1000,

Covance), mAB anti-Flag M2 (1:1000, Sigma), mAB anti-Myc 9E10 (1:1000,

Santa Cruz Biotech), and rabbit anti-Myc (1:1000, Santa Cruz Biotech).

mAbs against Lim3 (67.4E12), MNR2 (81.5C10), Isl1 (40.2D6), and neuronfila-

ment M (2H3) were obtained from the Developmental Studies Hybridoma

Bank. The rabbit anti-Ngn2 (1:500), rat anti-Ngn2 (1:200), and phospho-spe-

cific rabbit anti-Ngn2 P-S231&S234 antibodies (1:200) were generated and

affinity-purified in the Greenberg laboratory as described (Brunet et al.,

1999). Whole-mount neurofilament M immunostaining was performed as

described (Gu et al., 2003).

Constructs

Details can be found in the Supplemental Data.

In Vitro Kinase Assay

Details can be found in the Supplemental Data.

Immunoblotting and Immunoprecipitation

Details can be found in the Supplemental Data.

Gel Filtration Column

Details can be found in the Supplemental Data.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/1/65/DC1/.
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