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Gene transcription is the process by which the genetic codes of organisms are read and interpreted as a set
of instructions for cells to divide, differentiate, migrate, and mature. As cells function in their respective
niches, transcription further allows mature cells to interact dynamically with their external environment while
reliably retaining fundamental information about past experiences. In this Review, we provide an overview of
the field of activity-dependent transcription in the vertebrate brain and highlight contemporary work that
ranges from studies of activity-dependent chromatin modifications to plasticity mechanisms underlying
adaptive behaviors. We identify key gaps in knowledge and propose integrated approaches toward a deeper
understanding of how activity-dependent transcription promotes the refinement and plasticity of neural cir-
cuits for cognitive function.
Introduction
The cells in each tissue of the body adapt to ever-changing

external environments as they serve the essential needs of an

animal. Neurons of the brain are no different, but they face a

unique challenge relative to other cell types in the body. As post-

mitotic cells, neurons must remain highly adaptable and

dynamic throughout the lifetime of an animal while also reliably

encoding both short- and long-term memories of the animals’

experiences. Whereas most tissues in the body continuously

grow and regenerate through cell division, neurons coordinately

use their genome and synapses to store the requisite informa-

tion and perform computations on demand yet also adapt as

new experiences and stimuli are encountered throughout their

lifetime.

Neurons have thus evolved multiple interlinked strategies to

both respond dynamically to their immediate environment

and store information stably. One strategy that has been exten-

sively characterized over the last half century involves the

neurons’ utilization of the richness and diversity of their synap-

tic properties to maximize the magnitude and types of informa-

tion that they can retain. Substantial progress has beenmade in

our understanding of how neurons—via their synapses—can

be modified to store information on timescales in the order of

tens of milliseconds to an hour (Zucker and Regehr, 2002).

However, considerably less is understood about how synapses

store information for longer periods of time, as is often required

for learning of a specific task or memory formation and consol-

idation. To store information for long periods of time, neurons

appear to have evolved an additional strategy, which involves

the coupling of their synapses to another key information hub,

the nucleus.

The coupling of synaptic activity to the nucleus serves several

critical purposes. It promotes new gene transcription and in-

duces modifications of the DNA itself, the latter of which are

often referred to as epigenetic phenomena. Gene transcription

produces the mRNA transcripts necessary for new protein syn-
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thesis. A long-standing view of how experiences are stabilized

over time posits that new mRNA and protein synthesis must

occur to provide substrates for the structural and functional

modifications of synapses that support memory consolidation

(Hernandez and Abel, 2008). Importantly, this neuronal activity-

dependent transcription is in addition to, and should be distin-

guished from, the basal gene expression that already occurs in

the cell to replenish proteins that are degraded over time. This

distinction is essential for our understanding of how experience

sculpts the brain. For example, in establishing the role of new

mRNA and protein synthesis for memory consolidation, early

studies utilized pharmacological inhibitors of transcription and

mRNA translation. While these studies have been pivotal in es-

tablishing our view of how activity-dependent gene expression

supports higher-order cognitive functions, the fact that these in-

hibitors shut down the basal gene expression machinery that is

critical for the standard operation of a cell have clouded interpre-

tations of these findings. In a similar vein, many genes whose

expression is induced in response to neuronal activity (described

below) are often also expressed to some extent in the basal

state. This has complicated attempts to ascertain the role of ac-

tivity-dependent gene expression in circuit plasticity, as essen-

tially all loss- or gain-of-function manipulations to date have

also invariably affected the basal level of expression of these

genes. Therefore, novel approaches and technologies that

dissect the specific roles of activity-regulated processes will

be essential to understand themechanistic basis of long-term in-

formation storage in the nervous system and how these pro-

cesses go awry in neurological disorders.

It is noteworthy that despite more than three decades of sub-

stantial progress in the field of activity-dependent gene tran-

scription, we are only beginning to understand how this process

gives rise to behavioral adaptations. While experience-depen-

dent transcription has been shown to regulate numerous cellular

processes critical for the development and plasticity of the

central nervous system, the evidence that activity-dependent
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transcription is indeed necessary for instructing changes to

dynamic behavioral states at the organismal level, though

promising, is in its infancy. In the next decade, application of sin-

gle-cell transcriptomic and epigenomic analyses, novel mouse

genetic and viral tools, CRISPR/Cas9 gene editing, and two-

photon microscopy for chronic imaging of neurons in awake-

behaving animals under various behavioral contexts should

facilitate a great leap in knowledge in this area. These methods

should allow us to concurrently characterize how the activity-

dependent gene transcription program contributes to the emer-

gence and regulation of ensembles of behaviorally relevant

neurons within specialized networks and how the dynamics of

these active ensembles in turn form the basis of various learned

behaviors.

The significance of this endeavor cannot be overstated, espe-

cially in light of the growing body of evidence indicating that

neurodevelopmental and neuropsychiatric disorders, including

autism spectrum disorders, schizophrenia, intellectual disability,

major depressive disorders, and addiction, are either linked to

mutations in components of the activity-dependent transcrip-

tional pathways (Ebert and Greenberg, 2013; Nestler et al.,

2016) or associatedwith genetic variants that map to non-coding

regulatory regions in the genome. Indeed, large-scale genome-

wide association studies (GWAS) have revealed a significant

enrichment of common risk variants in cis-regulatory elements

(Maurano et al., 2012; Xiao et al., 2017), the accessibility of

many of which appears to be dependent on activity-dependent

transcription factors (Maurano et al., 2015). Together, these ob-

servations point to alterations in activity-dependent transcription

as key biological mechanisms underlying diseased states of the

nervous system. In addition to insights from disease-risk vari-

ants, recent comparative studies have uncovered augmenta-

tions to the activity-dependent transcriptional programs in

higher-order primate neurons that may contribute, at least in

part, to the advanced cognitive abilities of humans. Remarkably,

these evolutionary adaptations have been shown to arise from

the acquisition of activity-dependent non-coding regulatory se-

quences in the primate genome (Ataman et al., 2016; Hardi-

ngham et al., 2018), once again underscoring the critical role of

signal-dependent regulatory elements and activity-dependent

transcription in the evolution of expanded cognitive capacities

in humans.

In this Review, we begin by providing an overview of the field

of activity-dependent gene transcription that led to the emer-

gence of our current understanding of how sensory experience

sculpts the developing and adult brain. We then discuss recent

work that sheds light on how the delicate interplay between the

neuron’s transcriptome and epigenome within the context of

neural circuits gives rise to cellular processes that manifest in

behavioral adaptations. Finally, we look to the future and

explore lines of investigation and technological advances that

promise to break open a new and paradigm-shifting era that

hopefully will allow us to obtain a deeper understanding of

how activity shapes the brain. We argue that the study of

neuronal activity-dependent gene expression serves as a point

of convergence for molecular neuroscience and emerging sys-

tems-level framework for understanding information processing

and storage in neural circuits.
A Molecular Perspective
Immediate Early Gene Induction as First Signals for

Long-Term Adaptations

To facilitate discussion of the underlying principles of activity-

dependent transcriptional control of neural circuit form and func-

tion, we begin with a focus on the canonical immediate early

gene Fos. Discovered by Greenberg and Ziff in 1984 (Greenberg

and Ziff, 1984), the rapid and transient induction of Fos transcrip-

tion provided the first evidence that mammalian cells could

respond to the outside world within minutes by means of rapid

gene transcription, in particular through the activation of specific

genes (Cochran et al., 1984; Greenberg et al., 1985, 1986; Kruijer

et al., 1984; Lau and Nathans, 1987; M€uller et al., 1984). At the

time, the idea that trans-synaptic signals regulate the activity

or synthesis of certain neuropeptides and enzymes was recog-

nized (Black et al., 1985; Chen et al., 1983; Zigmond and Ben-

Ari, 1977; Zigmond and Mackay, 1974), but this regulation had

been found to occur over a period of days, and it was unclear

whether the observed effects were mediated by transcriptional

or post-transcriptional mechanisms. Moreover, it was known at

the time that sensory stimulation is accompanied by an increase

in RNA synthesis (Berry, 1969; Kernell and Peterson, 1970) and

that long-term changes to synapses occur in response to various

forms of learning in an RNA- and protein-synthesis-dependent

manner (Glassman, 1969; Goelet et al., 1986; Schwartz et al.,

1971). Therefore, the discovery that synapses communicate

rapidly with the nucleus by activating the transcription of Fos

represented a fundamental advance because it provided the first

mechanistic framework by which to understand the molecular

and cellular events underlying these learning-induced long-

term synaptic changes. The fact that the induction of Fos tran-

scription is a widespread event that occurs in many different

cell types (Sheng and Greenberg, 1990), coupled with the finding

that the Fos gene encodes a nuclear protein (Curran et al., 1984),

immediately prompted the speculation that Fos, by activating

subsequent programs of gene transcription, might mediate

cell-type-specific functions, including long-term adaptations

that underlie learning and memory in neurons.

As the idea that specific transcriptional events are rapidly acti-

vated by synaptic transmission became established, subse-

quent years saw a flurry of studies characterizing the immediate

early gene (IEG) program of signal-dependent transcription.

IEGs are defined as a class of genes that, like Fos, is rapidly

and transiently induced by extracellular stimuli, without a

requirement for new protein synthesis. Many IEGs encode

sequence-specific DNA-binding proteins that function as tran-

scription factors (TFs) and regulate a subsequent wave of late-

response gene (LRG) expression, which is now known to be

cell-type specific and tailored to the specific function of the

cell within a neural circuit (Mardinly et al., 2016; Sheng and

Greenberg, 1990). For the purpose of discussion, we refer to

LRGs as targets of IEG TFs, although there are delayed-

response genes that do not appear to require de novo transcrip-

tion for their expression (Tullai et al., 2007). Early on, several

questions arose regarding IEGs in the brain: (1) what are the

signaling mechanisms by which neurotransmitters drive the in-

duction of IEGs, (2) what are the IEG TF-regulated LRGs, (3)

how does a common set of IEG TFs regulate cell-type-specific
Neuron 100, October 24, 2018 331
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Figure 1. Schematic of Signaling Mechanisms Driving Activity-Dependent Transcription of Immediate Early Genes and
Late-Response Genes
Neurotransmitter signaling leads to the generation of action potentials in the neuron. Membrane depolarization induces the opening of L-type voltage-sensitive
calcium channels (L-VSCCs). Stimulus-dependent calcium entry via L-VSCCs preferentially leads to the activation of the Ras-MAPK pathway, calcium/
calmodulin-dependent protein kinases, and calcineurin-dependent signaling. Note that calcium influx can also occur via activation of NMDA receptors. Decades
of work from numerous laboratories have elucidated the molecular mechanisms of these calcium-dependent signaling cascades, which have been simplified in
this schematic. Cell-type-specific differences in signaling mechanisms that are not illustrated here have also been described (e.g., see Cohen et al., 2016). These
pathways lead to the activation of pre-existing transcription factors CREB, SRF/ELK, and MEF2, which regulate the expression of immediate early genes (IEGs)
such as Fos. Many IEGs encode transcription factors that regulate a subsequent wave of late-response genes, which have now been shown to be cell-type
specific.
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LRGs, and (4) what cellular processes do the activity-dependent

gene programs regulate? While great strides have been made in

addressing the first question, the latter questions have seen rela-

tively slower progress and are the major focus of this Review.

Over the years, work from a number of laboratories has eluci-

dated the signalingmechanisms that drive the activation of IEGs,

including Fos (Figure 1). Neurotransmitter-dependent induction

of IEGs invariably requires an influx of extracellular calcium into

the neuron. The resulting increase in cytoplasmic calcium stim-

ulates a cascade of signaling events, including the activation of

the Ras-mitogen-associated protein kinase (MAPK), calcium/

calmodulin-dependent protein kinases (CaMKs), and calci-

neurin-mediated signaling pathways (Bito et al., 1996; Hardi-

ngham et al., 1997; Sheng et al., 1991; Xing et al., 1996). In

addition to mediating local changes at synapses, such as the

surface expression or internalization of glutamate receptors,

local mRNA translation, and post-translational modifications of

proteins (Holt and Schuman, 2013; Martin and Zukin, 2006;

Thomas and Huganir, 2004; Wayman et al., 2008), activation of

these signaling cascades induces the transcription of activity-

regulated genes. Importantly, IEG induction can be triggered

by calcium influx through ligand-gated ion channels, such

as the N-methyl-D-aspartate-type (NMDA) and a-amino-3-hy-

droxy-5-methyl-4-isoxazolepropionate-type (AMPA) glutamate

receptors, and voltage-gated calcium channels, as well as

through the release of calcium from intracellular stores (West

et al., 2001). However, various studies have shown that, in partic-

ular, calcium entry through the L-type voltage-sensitive calcium

channels (L-VSCCs) preferentially drives gene transcription. This

is thought to be due to the localization of L-VSCCs in cell bodies

and proximal regions of dendrites (Westenbroek et al., 1990) and

thus their relative proximity to the nucleus, as well as their cal-
332 Neuron 100, October 24, 2018
cium conductance and gating properties (Simms and Zamponi,

2014; Wheeler et al., 2012) and their physical association with

signaling molecules (e.g., calmodulin) important for driving tran-

scription (Deisseroth et al., 1998; Dolmetsch et al., 2001; Ma

et al., 2014). With the advent of next-generation genetically en-

coded calcium indicators, further characterization of the source

of calcium fluctuations and the ionic concentrations and time

courses that drive activity-dependent transcription in awake-

behaving animals is likely to provide deeper insight into the

mechanisms of calcium-dependent gene transcription.

The extremely rapid induction of Fos and other IEGs suggests

that their activation is not dependent on protein synthesis but

instead relies on pre-existing transcription factors that are

activated rapidly and then drive IEG transcription. Indeed,

these constitutively expressed TFs have been identified and

include the cyclic adenosine monophosphate (cAMP)-respon-

sive element binding protein (CREB), serum response factor

(SRF), and myocyte enhancer factor 2 (MEF2), the former two

of which have been shown to control Fos transcription (Norman

et al., 1988; Sheng et al., 1988). Since CREB, SRF/ELK, and

MEF2 are constitutively expressed rather than induced in

response to neuronal activity, their activation is dependent

instead on their ability to integrate signaling from multiple cal-

cium-dependent pathways and undergo post-translational mod-

ifications, such as phosphorylation (Aizawa et al., 2004; Chawla

et al., 1998; Deisseroth et al., 1996; Flavell et al., 2006; Janknecht

and Nordheim, 1992; McKinsey et al., 2002; Rivera et al., 1993;

Shalizi et al., 2006). The literature on the signaling mechanisms

that trigger the transcription of activity-regulated genes is

impressively rich and has been comprehensively reviewed else-

where (Benito and Barco, 2015; Deisseroth and Tsien, 2002; Fla-

vell and Greenberg, 2008; Hagenston and Bading, 2011; Lonze
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and Ginty, 2002). Importantly, mutations in components of these

signaling pathways lead to developmental neurological disor-

ders, including Timothy syndrome (i.e., L-VSCC), Coffin-Lowry

syndrome (i.e., ribosomal S6 kinase 2), and Rubenstein-Taybi

syndrome (i.e., CREB-binding protein CBP) (Ebert and Green-

berg, 2013; Hong et al., 2005;Mullins et al., 2016). These findings

underscore the need for continued molecular characterization of

the activity-dependent transcriptional machinery to facilitate our

understanding of neurological disorders from the perspective of

neural circuits (S€udhof, 2017).

Once in the nucleus, Fos, together with its partner Jun, form

the major heterodimer of the activating protein complex 1

(AP-1). Additional members of the AP-1 family of TFs include

Fosb, Fosl1, and Fosl2 and Junb and Jund, any of which can

substitute for Fos or Jun, respectively, to form the AP-1 hetero-

dimer (Sheng and Greenberg, 1990). The biological basis of the

high level of redundancy within this complex TF family and the

specific functions of its individual members remain to be deter-

mined. In addition to members of the AP-1 family, IEGs,

including the Egr and Nr4a family of TFs, as well as the

neuronal-specific TF Npas4, are activated in neurons in

response to activity (Christy and Nathans, 1989; Lin et al.,

2008; Milbrandt, 1988). The advent of chromatin immunoprecip-

itation (ChIP) and RNA sequencing has enabled the identifica-

tion of the genome-wide binding sites of these TFs and revealed

specific LRGs regulated by these activity-dependent TFs.

Based on genome-wide assessments, there are an estimated

104 binding sites for activity-dependent TFs, such as Fos and

Npas4, and an estimated 300–500 LRGs regulated by these

TFs in neurons (Benito and Barco, 2015; Kim et al., 2010; Malik

et al., 2014; Mardinly et al., 2016).

LRGs typically encode effector proteins that regulate cellular

processes such as dendritic growth, spine maturation, synapse

elimination, and the development of proper excitatory/inhibitory

balance (West and Greenberg, 2011). Although considerable

progress has been made in describing the molecular and

cellular functions of individual LRGs (Leslie and Nedivi, 2011),

the sheer number of LRGs that remain to be characterized indi-

cates that additional work will be required to determine the func-

tions of the activity-dependent gene program as a whole. To

probe the function of this gene network, one approach has

been to disrupt the activity of individual TFs, such as CREB,

SRF, MEF2, or IEG TFs, and assess the effects on aspects of

neuronal function. However, the functional redundancy of these

TFs and the compensatory effects that arise when the function

of individual TFs is disrupted, as well as the emerging evidence

of cooperativity among many of these TFs (Kim et al., 2010),

have presented challenges to these lines of investigation. To

begin to tackle these challenges, the concurrent manipulation

of a larger number of related TF family members with either

classical genetic knockout approaches or novel multiplexed

CRISPR-based perturbations (described below) will be critical.

Moreover, these challenges underscore the need for new strate-

gies to uncover how each of the activity-dependent TFs may

have evolved specific roles in mediating transcription, either

through distinct functions at specific regulatory elements across

the genome, or by conferring specificity through cooperative ac-

tion with other TFs.
Diverse Activity-Dependent Gene Programs for Diverse

Cell Types

The mammalian brain is populated by numerous cell types with

distinct anatomical, electrophysiological, and transcriptomic

identities. An emerging hypothesis is that these distinct features

of cell types influence the coupling of neuronal activity with tran-

scription, resulting in distinct transcriptional responses to activ-

ity. However, early studies of activity-dependent transcription

were limited in scope due to the lack of cell-type resolution

and the use of pharmacological methods to induce neuronal ac-

tivity (Lin et al., 2008; Majdan and Shatz, 2006). Several recent

studies have revealed that the activity-dependent transcriptome

is neuronal subtype-specific both in cell culture and when

analyzed in vivo. Using RNA sequencing to identify activity-

dependent transcripts in cultures of embryonic excitatory or

inhibitory neurons, one particular study (Spiegel et al., 2014)

demonstrated that immediately following stimulation (within

60 min), both excitatory and inhibitory neurons express largely

overlapping sets of genes, which are enriched for the classically

known activity-dependent transcription factors (e.g., Egr1, Fos,

Fosb, and Npas4). However, at later time points (>120 min after

stimulation), excitatory and inhibitory neurons begin to express

divergent patterns of gene expression. These findings were rein-

forced by subsequent work that used ribosome tagging (Sanz

et al., 2009) to isolate mRNAs from specific neuronal subtypes

in vivo (Mardinly et al., 2016), which further revealed unique ac-

tivity-dependent gene programs in three different inhibitory

neuronal subtypes, the parvalbumin (PV)-, somatostatin (SST)-,

and vasoactive intestinal peptide (VIP)-expressing interneurons

of the forebrain.

Despite these advances, significant challenges to our under-

standing of the diversity of activity-dependent transcription

remain. One challenge is that currently available genetically

defined mouse lines, although numerous and varied with respect

to neuronal subtype, do not comprehensively span the universe

of cell types in the brain. However, the advent of single-cell

RNA-sequencing (scRNA-seq) technologies (Klein et al., 2015;

Macosko et al., 2015) has led to the identification of the full spec-

trum of known neuronal subtypes and has illuminated the tran-

scriptomes of previously unappreciated or inaccessible cell

types in multiple regions of the nervous system (Zeisel et al.,

2015). Building upon this technological advance, several recent

studies in the cortex, amygdala, and hippocampus have begun

the task of comprehensively characterizing the experience-

dependent transcriptomes in all cell types (Hrvatin et al., 2018;

Hu et al., 2017; Lacar et al., 2016; Wu et al., 2017) (Figure 2A).

In addition to identifying divergent transcriptional responses in

inhibitory neuron subtypes and excitatory neurons in different

laminar zones of the cortex, these studies identified a largely

unexplored response to extracellular stimuli in non-neuronal

cells (e.g., oligodendrocytes, endothelium, microglia, astrocytes,

pericytes, and macrophages) of the nervous system (Figure 2B).

The emergence of a rich landscape of stimulus-dependent tran-

scriptomes in diverse neuronal and non-neuronal cell types

reveals new avenues for understanding the role of experience-

dependent transcription within each region of the brain. For

example, analyses of stimulus-dependent transcriptional re-

sponses in the endothelium, oligodendrocytes, and astrocytes
Neuron 100, October 24, 2018 333
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Figure 2. Cell-type Specificity of the
Activity-Dependent Gene Programs
(A) Single-cell RNA-sequencing technologies have
enabled unprecedented characterization of the
diversity and cell-type specificity of experience-
dependent transcriptomes in the brain.
(B) Divergent activity-dependent transcriptional
responses in neuronal and non-neuronal cell types
depicted by heatmap of 611 stimulus-regulated
genes (horizontal black lines) grouped into early-
response and late-response genes by cell
type. Exc, excitatory neurons; Int, interneurons;
Olig, oligodendrocytes; endo/SM, endothelium,
smooth muscle; Micro, microglia. This figure is
adapted with permission from Hrvatin et al. (2018).
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have uncovered many new experience-regulated genes of as

yet unknown function. Activation of these non-neuronal cells

may be a secondary consequence of neurotransmitter-mediated

signaling, such as the release of neurotrophic factors and neuro-

modulators from neurons or changes in blood flow or oxygen

levels (Attwell et al., 2010; Mount and Monje, 2017). Additional

studies of these non-neuronal activity-dependent geneswill likely

reveal newmechanisms of structural and functional communica-

tion between neurons and non-neuronal cells that underlie neuro-

vascular coupling, myelination, and neurotransmitter reuptake

(Andreone et al., 2015; Barres, 2008; Purger et al., 2016).

As a complementary approach to scRNA-seq, several high-

throughput methodologies that enable the spatial resolution of

a large number of RNA transcripts within the same cells (e.g.,

FISSEQ, MERFISH, and STARmap) (Chen et al., 2015a; Lee

et al., 2015; Wang et al., 2018) may soon transform the study

of neuronal activity-dependent transcription, especially as these

technologies become increasingly optimized for the localization

of RNA molecules to specific subcellular compartments,

including distal dendritic regions. The ability to spatially localize

thousands of nascent activity-regulated transcripts in specific

cell types with subcellular resolution, within the context of a
334 Neuron 100, October 24, 2018
larger anatomical region, has the poten-

tial to clarify the relationship between

transcriptional regulation and local trans-

lation at specific synapses in response to

neuronal activity (Poo et al., 2016).

Developmental Specification of

Cell-type-Specific Activity-

Dependent Gene Programs

The discovery that activity-dependent

gene programs are cell-type specific not

only has profound implications for the

functional diversity of neural circuits but

also raises the question of how this diver-

sity of activity-dependent transcriptional

responses becomes specified during

cellular differentiation. In particular, the

question of how a stereotyped set of

IEG TFs induced in virtually all mamma-

lian cell types activates a unique set of

LRGs in each cell type in the brain has

garnered significant interest.
Recent progress toward understanding how cell-type speci-

ficity of activity-dependent gene transcription is achieved has

come from studies of Fos/Jun heterodimers. The investigation

of Fos function gained momentum in the 1990s when it was re-

vealed that this family of nuclear proteins interacts withmembers

of the Jun family via a hydrophobic dimerization motif, termed

the leucine zipper, to form a positively charged DNA-binding

domain that selectively interacts with the AP-1 consensus

sequence, 50-TGA(C/G)TCA-30 (reviewed in Sheng and Green-

berg, 1990). Studies with reporter genes in transient transfection

assays suggested that Fos/Jun heterodimers primarily bound to

AP-1 sites within promoters of their target genes to activate tran-

scription (Eferl and Wagner, 2003). Based on these findings, the

prevailing view in the literature was that Fos/Jun complexes

might bind to different promoters in each cell type to regulate

cell-type-specific programs of gene expression. However, over

the last several years, genome-wide approaches for mapping

TF binding sites revealed that Fos/Jun complexes bind instead

to gene distal enhancer elements (Malik et al., 2014). It is now

appreciated that enhancers enable the fine-tuning and spatio-

temporal control of gene expression levels (Long et al., 2016).

Indeed, recent studies have indicated that enhancers, rather
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are then ready for activation in the mature brain
the next time Fos/Jun complexes are induced in
response to neuronal activity.
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than promoters, are most often the gene regulatory elements

that confer the cell-type specificity of gene expression during

development and in mature organisms (Heintzman et al., 2009;

Long et al., 2016).

In addition to the realization that Fos/Jun complexes predomi-

nantly bind to enhancers, recent work has demonstrated that

even though across the mammalian genome there are approxi-

mately 106 AP-1 binding sites in each cell type, Fos/Jun com-

plexes bind to only approximately 104 of these sites (Kundaje

et al., 2015; Vierbuchen et al., 2017). When the binding of Fos/Jun

complexes was analyzed in different cell types, it became clear

that upon activation by extracellular stimuli, these complexes

bind to almost completely distinct repertoires of enhancers in

each cell type (Malik et al., 2014; Vierbuchen et al., 2017). Taken

together, these data suggest a model in which AP-1 factors may

be involved in the specific selection of an enhancer repertoire in

each cell type during mammalian development to determine the

cell-type specificity of activity-dependent gene expression.

The mechanisms by which AP-1 factors select enhancers in

each cell type are beginning to be uncovered (Heinz et al., 2013;

Vierbuchen et al., 2017). Although the consensus AP-1 binding

sites are present in virtually all cell types, adjacent to each site,
it is often possible to identify additional

DNA sequence motifs that are more cell-

type specific and predicted to bind so-

called pioneer TFs that, in contrast to

Fos/Jun complexes, are expressed in a

more cell-type-specific manner. As the

genetic ablation of Fos/Jun TFs has

been challenging due to redundancy

within the AP-1 family of TFs, further

insight into the role of AP-1 in enhancer
selection has come from comparisons of enhancers in fibroblasts

and macrophages from distinct genetically divergent inbred

mouse strains, which contain tens of millions of single nucleotide

polymorphisms (SNPs) across their genomes (Heinz et al., 2013;

Link et al., 2018; Vierbuchen et al., 2017). These experiments

identified hundreds of SNPs within enhancers that led to loss of

enhancer activity in one mouse strain, but not the other. Unex-

pectedly, SNPs that disrupted the AP-1 binding site were the

most frequently observed mutations in these enhancers (Vierbu-

chen et al., 2017), suggesting that AP-1 TF binding is required

for the selection of these enhancers.

These and additional findings have led to a model of stimulus-

dependent enhancer selection that posits that early during the

differentiation of a given cell type, most late-response gene

enhancer sequences are wrapped around histones to form nu-

cleosomes and are therefore not accessible to Fos/Jun hetero-

dimers (Figure 3, top panel). However, once expressed in

response to extracellular stimuli, Fos/Jun complexes most

likely cooperate with cell-type-specific pioneer TFs to evict nu-

cleosomes at specific enhancers in each cell type, thus

rendering them primed for subsequent activation. Interestingly,

AP-1 factors were found to interact directly with the SWI/SNF
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ATP-dependent chromatin remodeling complex (also referred to

as the Brg1-associated factor [BAF] complex) (Vierbuchen et al.,

2017), a 12–15 subunit complex that can evict or move histone

octamers from enhancer sequences, thus promoting the binding

of additional TFs.

In the brain, the pioneer TFs that work together with AP-1 fac-

tors to select enhancers in a neuronal subtype-specific manner

to bring about unique activity-dependent transcriptional re-

sponses in each neuronal subtype should be the subject of future

investigation. Candidate TFs based on motif analyses of active

enhancers in hippocampal neurons include the bHLH factors

and members of the Egr family (Su et al., 2017; Vierbuchen

et al., 2017). Another future avenue of investigation pertains to

the role of the BAF complex in the brain. The composition of

BAF subunits has been shown to be unique in neurons (Wu

et al., 2007), thus providing a possible means for specialization

of transcriptional responses to neuronal activity. Notably, there

is now mounting evidence that mutations of at least eight of

the subunits of the BAF complex can lead to intellectual disability

or autism spectrum disorders in humans (Ronan et al., 2013).

However, future experiments will be critical to determine

whether activity-dependent gene programs are deregulated in

the absence of BAF and to identify the specific consequences

of this deregulation in the pathogenesis of these disorders.

As genes that are critical for brain function tend to have multi-

ple enhancer elements with redundant functions, ascribing func-

tion to individual enhancers in the brain is a significant challenge.

Therefore, while there is presently no direct evidence that indi-

vidual activity-dependent enhancers are required for neural cir-

cuit development or function, evidence is accumulating that

this is likely to be the case. Perhaps the most compelling insight

has come from genetic studies indicating that disease-associ-

ated non-coding variants tend to be found within cis-regulatory

elements and not protein coding sequences (Maurano et al.,

2012). Intriguingly, a recent large-scale study of accessible cis-

regulatory elements across multiple human tissue types further

revealed that SNPs within AP-1 motifs are a common cause of

changes in chromatin accessibility (Maurano et al., 2015). Taken

together, these findings suggest that activity-regulated AP-1 TFs

are critical for enhancer selection and activation of LRG tran-

scription in a cell-type-specific manner. The next decade of

research will undoubtedly continue to inform this model and

lend further mechanistic insight into the process of experience-

dependent brain development and the pathogenesis of various

neuropsychiatric disorders.

Neuronal Activity Shapes the Brain’s Epigenome

In the previous section, we have discussed how extracellular

stimuli, through inducible transcription factors, regulate the se-

lection of enhancers to give rise to diverse activity-dependent

gene programs. Once cell-type-specific enhancers have been

commissioned during development, the short-lived Fos/Jun

heterodimers decay away and the enhancers again become

occluded by nucleosomes. Nevertheless, the selected en-

hancers appear to remain primed for activation, such that re-in-

duction of Fos/Jun leads to recruitment of BAF to remodel the

nucleosomes and enhance chromatin accessibility for activation

of gene transcription in mature neurons (Vierbuchen et al., 2017;

Wu et al., 2007) (Figure 3, bottom panel).
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In addition to recruiting chromatin remodeling complexes,

neuronal activity has also been shown to regulate chromatin

accessibility by controlling the turnover and exchange of his-

tones (Maze et al., 2015; Yang et al., 2016; Zovkic et al., 2014).

For example, once activity-regulated genes are induced, they

must be turned off again. A recent study suggests that this pro-

cess is mediated by recruitment of the nucleosome remodeling

and deacetylase complex (NuRD) to promoters, where it pro-

motes a change in histone H2A.z composition, resulting in the

shutoff of activity-dependent transcription, which appears to

be crucial for dendritic pruning and sensorimotor neural coding

(Yang et al., 2016).

While activity-regulated changes in gene transcription are

relatively short-lived, occurring over a period of hours, learned

behaviors and memories can persist for weeks to months in

mice and for years to decades in humans. This leaves open

the question of how information is stored in the neuron for

extended periods of time after neuronal activity has subsided

and activity-dependent gene expression has returned to its

basal level. One possibility is that these transient changes in

gene expression lead to changes in synaptic connectivity that

are somehow stabilized so that they last well beyond the period

of inducible gene expression. Another relatively nascent but

emerging hypothesis is that neuronal activity, in addition to

inducing gene expression via the mechanisms described above,

can trigger long-lasting modifications of the genome that in turn

affect the gene expression profile of the neuron, permitting the

encoding of a memory of prior experiences within the neuronal

genome itself. Specifically, the deposition or removal of cytosine

methylation across the neuronal genome have been postulated

to fulfill this function (Bird, 2002).

Until recently, most studies of the function of cytosine methyl-

ation in the brain have focused on methylation at CG (mCG) se-

quences. Early studies examining whether changes in DNA

methylation occur during learning revealed changes in mCG pat-

terns at a number of activity-regulated genes, including Brain-

derived neurotrophic factor (Bdnf) and Activity-regulated cyto-

skeleton-associated protein (Arc) (Lubin et al., 2008; Miller and

Sweatt, 2007). In addition, these studies demonstrated that

pharmacological inhibition of DNA methyltransferases (DNMT),

the enzymes responsible for depositing methylation across the

genome, leads to alterations in the mCG states of specific genes

and is correlated with impaired memory formation (Levenson

et al., 2006). Despite these intriguing initial findings, it remains

to be determined whether these correlations between the

methylation state of individual activity-regulated genes and

behavioral outputs are causally related.

The advent of newly developed whole-genome sequencing

methods for assessing cytosine methylation at single-base pair

and single-cell resolution has allowed for several additional key

discoveries to be made (He and Ecker, 2015; Luo et al., 2017).

Perhaps, most importantly, these analyses revealed that neu-

rons accumulate high levels of mCA during the first few weeks

of postnatal mouse development when sensory experience is

actively promoting the refinement of neural circuits. In humans,

these non-CG methylation marks gradually accumulate in neu-

rons during the first two decades of life (Lister et al., 2013). In

particular, mCA is deposited across the transcribed regions of
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lowly expressed genes in a neuronal subtype-specific manner

(Mo et al., 2015; Stroud et al., 2017). At these genes, readers

of mCA, such as the methyl-CpG binding protein 2 (MeCP2),

are found to act as repressors of gene transcription in part

through the recruitment of histone deacetylases (Chen et al.,

2015b; Ebert et al., 2013; Gabel et al., 2015; Lagger et al.,

2017; Lyst et al., 2013; Sugino et al., 2014), though much work

remains to be done to clarify the mechanisms by which

MeCP2 represses gene expression. Interestingly, mutations in

MeCP2 give rise to Rett syndrome in humans and also lead to

significant neuronal dysfunction and behavioral abnormalities

in mouse models (Chahrour and Zoghbi, 2007). Furthermore,

deletion of the DNA methyltransferase Dnmt3a, which deposits

mCA across the neuronal genome in the postnatal period, results

in a disruption of the active maintenance of mCA in mature neu-

rons (Guo et al., 2014; Stroud et al., 2017), leading to behavioral

deficits reminiscent of those observed in Rett syndrome (Elliott

et al., 2016; LaPlant et al., 2010).

Perhaps most provocative is recent evidence indicating that

neuronal activity affects the function of Dnmt3a and MeCP2 by

regulating the deposition and reading of mCA across the

neuronal genome, respectively. For example, heightened levels

of neuronal activity in early life decrease the binding of Dnmt3a

at activity-regulated genes, thus reducing the levels of mCA

across their transcribed regions in a manner that persists

throughout the life of the organism (Stroud et al., 2017). Addition-

ally, the MeCP2 protein is rapidly phosphorylated at multiple

sites in response to neuronal activity, potentially leading to the

regulated release of repressive co-factors from the neuronal

genome (Ebert et al., 2013; Lyst et al., 2013) (Figure 4A). It is

noteworthy that the gene expression deficits associated with

MeCP2 loss-of-function models have been suggested to be

restricted to highly methylated long genes due to the large num-

ber of mCA sites in these genes (Gabel et al., 2015; Sugino et al.,

2014) (Figure 4B). Furthermore, these deficits are partially

rescued by the application of topoisomerase inhibitors, which

were found to suppress gene transcription in a length-depen-

dent manner (Gabel et al., 2015; King et al., 2013). Intriguingly,
topoisomerases have also been impli-

cated in controlling the rapid induction

of activity-dependent genes by resolving

topological barriers imposed at pro-
moters (Madabhushi et al., 2015). Taken together, these findings

raise the possibility that neuronal activity leads to modification of

the activity or binding of the protein complexes responsible for

depositing and reading mCA, potentially greatly lengthening

the time period during which neuronal activity might affect the

neuronal transcriptome.

A Cellular and Circuit Perspective
Experience-Dependent Transcriptional Instruction for

the Developing Brain

Insight into how activity-dependent transcriptional mechanisms

control neural circuit function has been informed by efforts to

characterize the role of neuronal activity in regulating the many

stages of brain development and maturation as well as learning

and behavioral adaptations. The development of themammalian

brain is controlled by both genetics and the environment. At

birth, while the brain, like most organs, is largely formed, it con-

tinues to mature over a prolonged period in response to sensory

experience. Beginning with the landmark work of Hubel andWie-

sel that established the role of visual experience in shaping

ocular dominance columns in the visual cortex (Hubel and Wie-

sel, 1970), the significance of sensory experience in fine-tuning

neural connectivity in the postnatal brain has become increas-

ingly evident (Hensch, 2005; LeBlanc and Fagiolini, 2011).

There are several distinct stages of postnatal nervous system

development, each of which is controlled at least in part by activ-

ity-dependent transcription. Neurons first undergo axonal

growth and dendritic arborization, followed by a period of

exuberant synapse formation. Subsequently, synapse elimina-

tion occurs, and the number and strength of synapses are cali-

brated to ensure proper connectivity and excitatory-inhibitory

balance within neural networks (West and Greenberg, 2011).

Each of these steps is highly regulated by calcium-dependent

processes that induce activity-regulated genes, many of which

encode synaptic effector molecules. To date, a number of activ-

ity-regulated genes that coordinate various aspects of synapse

maturation and function during critical periods, defined as pe-

riods of increased sensitivity to environmental influences in early
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postnatal life (LeBlanc and Fagiolini, 2011), have been identified

and characterized. These genes include Bdnf, Arc, Homer ho-

molog 1a (Homer1a), Neuronal pentraxin 2 (Nptx2), and Neuritin

1 (Nrn1 or cpg15) (Flavell and Greenberg, 2008; Korb and Fink-

beiner, 2011; Leslie and Nedivi, 2011; Shepherd and Bear,

2011) (Figure 5).

Bdnf encodes a secreted protein that regulates the excitatory-

inhibitory balance that is required for critical period plasticity

(Greenberg et al., 2009; Hensch, 2005; Timmusk, 2015). In one
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study, amouse linewas generated that contains a subtle knockin

mutation in Bdnf promoter IV, which, among eight known pro-

moters inmice, is the predominant promoter that drives neuronal

activity-dependent Bdnf transcription in the cortex. The knockin

mice displayed a significant decrease in the number and

strength of GABAergic synapses that form on cortical pyramidal

neurons, suggesting that activity-dependent Bdnf transcription

regulates synaptic inhibition (Hong et al., 2008). This knockin

line contains mutations in the cAMP response element (CRE),

which were sufficient to disrupt CREB binding and thus CREB-

dependent Bdnf transcription. Importantly, this specific manipu-

lation affected neuronal activity-dependent transcription ofBdnf,

but not basal transcription from the other Bdnf promoters. This

dissociation was key in allowing for the precise determination

of the physiological function of neuronal activity-dependent

Bdnf transcription. It is noteworthy that a subtle change within

one of multiple regulatory elements that control the expression

of Bdnf can profoundly affect neural wiring, providing support

for the idea that additional variants in activity-dependent regula-

tory elements will be found to affect circuit connectivity and

function.

Neuronal pentraxins are also dynamically regulated by activity

and have been shown to promote neurite outgrowth (Tsui et al.,

1996). In a recent study, Nptx2 was shown to be crucial for the

recruitment of excitatory synapses onto a specific subtype of

GABAergic interneurons, the PV-expressing interneurons (Pel-

key et al., 2015) (Figure 5). Secreted Nptx2 does this by regu-

lating the clustering of GluA4, a subunit of the AMPA receptor.

A consequence of loss of Nptx2 is the disruption of excitatory

synaptic transmission in PV interneurons, which leads to

impaired PV-mediated feedforward inhibition. This defect in

PV-mediated inhibition in turn prolongs the critical period, lead-

ing to a deficiency in circuit rhythmogenesis, hyperactivity,

increased anxiety, and deficits in spatial working memory.

Homer1a is an activity-regulated gene that encodes apostsyn-

aptic scaffold protein that functions as a negative regulator of

AMPA receptor expression at synapses (Diering et al., 2017;

Shan et al., 2018). This finding is consistent with the observation

that Homer1a transcription is mediated by the activity-regulated

transcription factor MEF2, which has also been found to restrict

the number of excitatory synapses (Flavell et al., 2006). Arc is

another target of MEF2 that promotes the endocytosis of

AMPA receptors. Thus, MEF2 serves as a versatile negative

regulator of excitatory synapse development (Barbosa et al.,

2008; Chowdhury et al., 2006; Rial Verde et al., 2006; Wilkerson

et al., 2014) (Figure 5). By contrast, cpg15, a small extracellular

protein anchored to the membrane, promotes synapse stabiliza-

tion (Fujino et al., 2011; Harwell et al., 2005). Adding to this

growing list, a recent study describes a novel function for Fibro-

blast growth factor-inducible 14 (Fn14), an activity-regulated

gene that is expressed in the dorsolateral geniculate nucleus

and regulates synaptic refinement in the vision-dependent phase

of retinogeniculate synapse maturation (Cheadle et al., 2018).

These activity-regulated genes are only a small subset of the

hundreds that remain to be characterized, and thus, the next

decade will undoubtedly witness specific functions being

ascribed to many more activity-regulated genes. These studies

highlight the diversity and exquisite tailoring of activity-regulated



Figure 6. Mutations in Specific
Components of the Activity-Dependent
Transcriptional Pathway Have Been
Implicated in Various Neurodevelopmental
and Neurological Disorders in Humans
Simplified schematic depicting that mutations in
L-VSCCs have been implicated in Timothy syn-
drome, Rsk2 in Coffin-Lowry syndrome, and
CREB-binding protein CBP in Rubenstein-Taybi
syndrome. Mutations in multiple subunits of the
BAF complex have been implicated in various
neurological disorders, including sporadic autism
and intellectual disability (see Ronan et al., 2013).
Mutations in MeCP2 lead to Rett syndrome. Bdnf
is an example of a late-response gene whose
defects in expression or function have been
associated with impaired episodic memory and
depression, among others.
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effector molecules to distinct developmental processes in spe-

cific cell types and brain regions. Importantly, progress in char-

acterizing the function of additional activity-regulated genes

will have to be made concurrently with efforts to understand

the overall effect of the network of activity-regulated genes in

the developing brain. This is especially crucial given that various

neurodevelopmental disorders, including autism spectrum dis-

orders, schizophrenia, and intellectual disability, manifest in a
common disruption of excitatory-inhibi-

tory balance during critical periods

(LeBlanc and Fagiolini, 2011; Mullins

et al., 2016; Nelson and Valakh, 2015).

Although defects in specific components

of the activity-dependent gene network

have been implicated in these polygenic

disorders (Figure 6), a future challenge

will be to identify unifying pathophysio-

logical mechanisms that underlie them.

This may be achieved by interrogating

the activity-dependent transcriptional

regulatory mechanisms at play in a sys-

tematic manner, using high-throughput

methodologies and mouse models of

these disorders.

Activity-Dependent Transcription

Is Activated and Serves as a

Reporter of Neuronal Activity in the

Mature Brain

Once neural circuits have matured, expe-

rience-dependent plasticity manifests

broadly as a mechanism for adaptations

to diverse physiological drives, including

hunger, thirst, sleep, fear, pain, cold,

and warmth, as well as social interac-

tions. These distinct internal states give

rise to various forms of goal-oriented

learning as an organism interacts with

the external world and seeks to meet its

physiological needs. Some forms of

learning can occur gradually over a

period of days or weeks and may require
the development of long-term memories, which sometimes last

the lifetime of the animal.

To understand how neuronal activity-driven transcription reg-

ulates circuit dynamics and behavior in themature brain, it would

first be necessary to understand the cellular and behavioral

features in vivo that lead to the induction of activity-dependent

gene programs. This was initially accomplished using immuno-

histology and in situ hybridization approaches to monitor IEG
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expression in specific brain regions in response to distinct

behavioral states (see Tischmeyer and Grimm, 1999). These

studies demonstrated the high fidelity and utility of IEGs as

markers of neuronal activation in various behavioral paradigms

and also raised the possibility that IEGs might directly regulate

synaptic plasticity and thus behavioral adaptations.

In recent years, these IEGs, and in particular Fos andArc, have

become increasingly useful as reporters of neuronal activity in

the brain as novel genetically encoded mouse and viral tools

have been generated (DeNardo and Luo, 2017). These tools

not only enable the labeling of, but also provide access to, acti-

vated neurons either transiently or permanently. The advantages

and disadvantages of various activity-based tools, as well as

technologies that allow intact brain-wide fluorescent imaging

at cellular resolution (Renier et al., 2016; Ye et al., 2016), have

been extensively reviewed elsewhere (see DeNardo and Luo,

2017; Kawashima et al., 2014). Briefly, the most basic designs

consist of IEG promoters used to drive various effector

gene modules, including fluorescent proteins for visualization,

ligand-dependent transcription factors or recombinases for

downstream expression of additional effector genes, and light-

or ligand-gated channels for subsequent control of the labeled

populations. Moreover, as is the case with transgenic and viral

strategies, enhancer modules, the short regulatory sequences

containing the DNA-binding sites of sequence-specific TFs,

can be added to these designs to augment the transcriptional re-

sponses of the IEG-dependent effectors (e.g., E-SARE andRAM)

(Kawashima et al., 2013; Sørensen et al., 2016).

As these genetically encoded tools are largely based on Fos

and Arc, which are expressed in many cell types, they do not

provide selective access to specific neuronal subtypes, and

thus, these reporters cannot yet be used to perturb the function

of subtype-specific neurons that have been activated. The

design of the next generation of activity-based toolsmust neces-

sarily focus on the creation of cell-type-specific activity-depen-

dent reporters. Regulatory elements controlling the induction

of Npas4, for example, would likely be promising in restricting

effector expression to neurons, as Npas4 expression is selec-

tively induced in response to calcium influx-dependent neuronal

activity (Lin et al., 2008). In addition, with the advent of next-

generation sequencing technologies, which have enabled the

profiling of thousands of activity-dependent regulatory elements

(Kim et al., 2010; Malik et al., 2014; Su et al., 2017), the identifi-

cation and characterization of new enhancer elements that

confer both activity- and neuronal-subtype resolution should

be within reach.

Experience-Dependent Transcription in the Plasticity of

Circuits that Underlie Learning and Memory

The currently available genetically encoded activity-dependent

reporters have already proven to be indispensable for establish-

ing the importance of distinct subsets of activated neurons for

specific behaviors. For example, a series of studies have used

the permanent labeling of Fos-activated neurons during contex-

tual fear conditioning to implicate these activated neurons in

contextual fear memory formation, consolidation, and attenua-

tion (Garner et al., 2012; Khalaf et al., 2018; Kitamura et al.,

2017; Liu et al., 2012). However, currently little is known about

the learning-related structural and functional alterations that
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occur during the encoding of fear memories in these activated

neuronal ensembles. In addition, although within activated neu-

rons protein synthesis-dependent increases in dendritic spine

density and synaptic strength have been shown to underlie the

ability of an animal to perform natural recall (Ryan et al., 2015),

establishing a specific requirement for activity-dependent tran-

scription in consolidation and reconsolidation (Alberini and

Ledoux, 2013) will require more precise genetic loss- and gain-

of-function manipulations to the activity-dependent transcrip-

tional program.

To date, both loss- and gain-of-function manipulations to

numerous activity-regulated genes, including Arc, Homer1a,

Bdnf, Creb, Srf, Mef2, Fos, Fosb, Egr1, and Npas4, have identi-

fied deficits in classical behavioral paradigms such as contextual

fear conditioning, spatial memory, and novel object recognition

(reviewed in Nonaka et al., 2014; Okuno, 2011). However, these

studies have so far employed relatively coarse manipulations

that target entire brain regions, thus making it difficult to disen-

tangle cell-autonomous effects from those that are due to

network-level perturbations. It is noteworthy that these prior ge-

netic manipulations likely affected a multitude of cell types,

including neuronal and non-neuronal cell types, thus compli-

cating identification of the primary and secondary effects of

disrupting the function of a specific component of the activity-

dependent transcriptional network. While these studies impli-

cate a role for activity-dependent transcription in neural circuit

function and behavior, further characterization of the structural

and functional changes that activated neurons undergo during

learning should shed light on how activity-dependent transcrip-

tion modifies synapses in order to balance the flexibility and sta-

bility required for the proper encoding of memories.

The advent of modern imaging technologies has proven

particularly advantageous for understanding the dynamic nature

of synapses, from their protein compositions to their structure

(Svoboda and Yasuda, 2006). The ability to perform longitudinal

imaging of the mammalian brain in awake-behaving animals,

with input and cell-type specificity, has been especially informa-

tive given the timescales over which transcriptional mechanisms

typically manifest. For example, there have been significant

strides in understanding experience-dependent structural plas-

ticity through in vivo imaging. This has led to the identification

of differences in spine dynamics depending on cell type and

brain region (Berry and Nedivi, 2016). Several studies have re-

vealed that while spines are impermanent in the hippocampus,

they are significantly more persistent in the neocortex, possibly

reflecting the different durations of information retention in

each region (Attardo et al., 2015; Holtmaat and Svoboda,

2009). Moreover, in contrast to the stability of excitatory synap-

ses in the visual cortex, nearby inhibitory synapseswere found to

remodel continuously, with the rate of remodeling dependent on

changes in sensory input (Rose et al., 2016; Villa et al., 2016).

These and other findings provide a synaptic correlate for exam-

ining how activity-dependent transcription allows cortical and

subcortical circuits to encode information stably while remaining

dynamic.

How some synapses persist while others are modified in an

experience-dependent manner remains to be determined. By

virtue of the hundreds of genes that are activated in response
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to sensory stimuli, activity-dependent transcription could poten-

tially play an instructive role in promoting the turnover of partic-

ular synapses while simultaneously stabilizing other synapses.

Importantly, various mechanisms by which activity-dependent

transcription controls the turnover of synapses, including regu-

lated mRNA transport and local translation of distinct mRNA

transcripts, have been identified (Fontes et al., 2017; Martin

et al., 1997; Van Driesche and Martin, 2018). In the future, deter-

mining how the activity-dependent transcriptional program

influences the dynamics of individual synapses will require a

comprehensive understanding of the net effect of the multitude

of activity-regulated effector genes that are induced and the abil-

ity to visualize their mRNAs or protein products and their spatial

distribution across many synapses in a neuron in vivo. In addi-

tion, as animals employ multiple concurrently active forms of

plasticity during learned behaviors, defining coherent mecha-

nisms of the activity-dependent transcriptional program will be

greatly facilitated by chronic imaging of neurons over prolonged

periods to detect the different forms of plasticity that underlie

learning and memory.

A recent study represents a start to achieving these goals (El-

Boustani et al., 2018). Using two-photonmicroscopy to measure

multiple forms of spike-timing-induced plasticity within single

dendritic branches while tracking the molecular dynamics of

Arc and visualizing AMPA receptor endocytosis, El-Boustani

et al. (2018) address how local coordination of different forms

of plasticity shapes neuronal responses to visual inputs in awake

animals. By this analysis, Arc was found to be critical for both the

Hebbian strengthening of activated synapses and the heterosy-

naptic weakening of adjacent synapses. In the future, longitudi-

nal imaging of the same sets of spines over days will provide

additional insight into how various plasticity mechanisms, via ac-

tivity-regulated transcription and LRG expression, regulate the

strengths of these synapses. In addition, recent work has identi-

fied a viral capsid-like property of Arc protein that packages Arc

mRNA in extracellular vesicles in synaptic boutons (Ashley et al.,

2018; Pastuzyn et al., 2018). These vesicles are released upon

neuronal stimulation and trafficked across the synaptic cleft

and into postsynaptic neurons, providing an input-specific

mechanism by which Arc can regulate plasticity at distinct

activated synapses. The prevalence of this form of synaptic

plasticity in the mammalian brain and its interplay with spike-

timing-dependent plasticity, as described above, would be of

great interest for future studies.

As our understanding of the activity-dependent transcriptome

has deepened, the possibilities for uncovering the activity-

dependent transcriptional regulation of various plasticity mech-

anisms underlying learned behaviors have increased. For

example, a notable observation from recent cell-type-specific

activity-dependent gene expression studies (Hrvatin et al.,

2018; Mardinly et al., 2016; Spiegel et al., 2014) is that each

cell type possesses a distinct set of activity-dependent tran-

scripts, a subset of which encodes secreted molecules. These

secreted factors allow each neuronal subtype to interact with

and modify specific synaptic inputs within their resident neural

circuit (Figure 5). For example, there is mounting evidence indi-

cating that in the CA1 region of the hippocampus, Bdnf is

selectively induced in excitatory neurons and critical for the
recruitment of inhibitory inputs onto the somatic region of excit-

atory neurons (Bloodgood et al., 2013; Spiegel et al., 2014). Inter-

estingly, this regulation of perisomatic inhibition is mediated by

transcription of the neuronal-specific IEG Npas4, which also re-

stricts dendritic inhibition in a manner that permits the dendritic

neighborhood of activated pyramidal neurons to become more

receptive to excitatory inputs and thus more permissive of plas-

ticity. However, the activity-regulated genes that directly

mediate this change in dendritic inhibition are not yet known.

In contrast to these observations in the hippocampus, in the vi-

sual cortex in response to light, insulin-like growth factor 1

(Igf1) was found to be selectively induced in VIP-expressing in-

terneurons, where it recruits inhibitory inputs onto the VIP-ex-

pressing interneurons themselves, thereby imposing a sensory

experience-dependent brake on cortical plasticity (Mardinly

et al., 2016). These results underscore the intricacy of the

neuronal subtype-specific activity-dependent gene programs

and thus their far-reaching implications for the plasticity of sub-

type-specific inhibitory synapses in response to learning.

Learning-induced changes in GABAergic interneuron sub-

types that are consistent with the timescale of activity-depen-

dent transcription have been well demonstrated in many

systems. As an example, motor learning can induce dendritic

compartment-specific reorganization of spines, coincident with

changes to local inhibitory circuitry (Chen et al., 2015c). Specif-

ically, SST-positive interneurons, which largelymediate dendritic

inhibition, show a learning-dependent reduction in bouton den-

sity over days. In contrast, the number of PV-positive axonal

boutons increase with motor learning, implying an enhancement

of control over action potential output of pyramidal neurons in

the motor cortex. As another example, learning-induced in-

creases in the selectivity of pyramidal neurons in the visual cor-

tex for a rewarded stimulus are accompanied by increases in

selectivity of PV-positive interneurons for the same stimulus

and concurrent decorrelation of SST-driven activity from the

network (Khan et al., 2018). Understanding the mechanisms

by which activity-dependent gene transcription gives rise to

learning-induced reorganization of inhibition and the subsequent

enhancement of cortical representations of task-relevant stimuli

would represent a significant step in linking neuronal activity to

long-term changes in neural circuit function.

The regulation of several additional forms of plasticity by

activity-dependent transcription has also been described. For

example, in a recent study, the activity-dependent transcription

factor Mef2c was found to be crucial for the promotion of local

excitatory inputs onto layer 2/3 pyramidal neurons in the so-

matosensory cortex and a simultaneous downregulation of the

strength of long-range excitatory inputs originating from contra-

lateral regions (Rajkovich et al., 2017). These findings under-

score the capacity for activity-dependent transcription to

determine not only local network function, but also inter-hemi-

sphere communication in the brain.

In addition, there is emerging evidence that activity-

dependent transcription regulates intrinsic neuronal excitability.

Learning-induced phosphorylation and activation of CREB in a

subset of neurons has been shown to enhance neuronal

excitability (Lisman et al., 2018). This increase in intrinsic excit-

ability facilitates the allocation of CREB-activated neurons to a
Neuron 100, October 24, 2018 341



Neuron

Review
subsequent memory trace closely linked in time (Rashid et al.,

2016). In contrast to these observations, some studies report

higher spontaneous firing rates but no changes in intrinsic excit-

ability in Fos-activated neurons, which may be due to stronger

synaptic connectivity among these neurons (Yassin et al.,

2010). The causal relationship between activity-dependent tran-

scription and these neuronal properties remains to be deter-

mined. Understanding how activity-dependent transcription

contributes to the emergence of distinct ensembles of behavior-

ally relevant neurons through the interplay of global neuron-wide

and local synapse-specific mechanisms will be important.

Experience-dependent transcription also plays a prominent

role in the regulation of homeostatic plasticity (Turrigiano,

2012). A new study identifies a physiological role for homeostatic

scaling-down during sleep, which occurs by an activity-regu-

lated, Homer1a-dependent mechanism involving the removal

of AMPA receptors and the weakening of excitatory synapses

(Diering et al., 2017). Importantly, the targeting of Homer1a to

postsynaptic densities is modulated by the neuromodulator

adenosine, which is present at higher levels during the sleep

cycle, highlighting the intricate control of brain state-dependent

homeostatic synaptic scaling crucial for the consolidation of

memories.

Finally, recent evidence indicates that neuronal activity pro-

motes adaptive myelination. This then likely leads to increases

in the velocity at which action potentials propagate along axons.

Activity-dependent myelination may be advantageous for rein-

forcing the learning of certain tasks, such as skilled motor ac-

tions. Notably, within several hours of activation of excitatory

neurons, the proliferation and subsequent differentiation of

nearby oligodendrocyte precursor cells (OPCs) ensues (Gibson

et al., 2014). Both OPC proliferation and differentiation take

several hours to occur and may require activity-dependent

gene transcription. One hypothesis is that an activity-regulated

gene in excitatory neurons encodes a secreted protein, such

as BDNF, that then binds to its receptor (e.g., TrkB) on OPCs

and stimulates OPC proliferation and differentiation, thus pro-

moting myelination (see Mount and Monje, 2017). The signifi-

cance of this form of structural remodeling for neural circuit

plasticity has the potential to be far-reaching in both healthy

and diseased states of the nervous system.

Future Perspectives and Concluding Remarks
In describing the progress that has been made over the past de-

cades, we have highlighted gaps to be addressed as we seek a

better understanding of the activity-dependent transcriptional

control of neural circuit function. We conclude by identifying

and proposing several additional areas of focus for the future.

Importantly, these prospective avenues of research will un-

doubtedly be defined by innovative combinations of modern

sequencing, genome editing, and functional imaging methodol-

ogies, which have the potential to yield unprecedented insights

into higher-order cognitive processes.

In the brain, the intricate interplay of various plasticity mecha-

nisms during learning gives rise to neuronal ensembles that

display population-level representations of behaviorally relevant

stimuli (Picardo et al., 2016). Notably, these subnetworks of neu-

rons generate dynamic patterns of activity that underlie various
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adaptive behaviors. Accordingly, understanding how activity-

dependent transcription mediates learned behaviors will require

dissecting its role in the emergence and regulation of these

neuronal ensembles. To that end, it will first be necessary to

characterize the specific cellular and behavioral features that

induce IEGs during natural behaviors. This should be possible

to achieve by two-photon calcium imaging of populations of neu-

rons while simultaneously monitoring the dynamics of IEG

expression in vivo. In this regard, special attention must be given

to the choice of IEG-based mouse genetic tools to ensure the

faithful recapitulation of the endogenous levels and temporal

patterns of activity-dependent gene expression, as well as pres-

ervation of the function of the IEG protein products.

These in vivo calcium imaging experiments will also facilitate

the linking of calcium fluctuations and calcium-dependent

signaling mechanisms to activity-dependent transcriptional re-

sponses. Several studies have suggested that varying patterns

of neural activity can give rise to unique activity-dependent

gene programs (Belgrad and Fields, 2018; Dolmetsch et al.,

1998; Tyssowski et al., 2018; Worley et al., 1993; Wu et al.,

2001). However, our understanding of how these patterns of ac-

tion potentials influence the dynamic flow of information from the

synapse to the nucleus and lead to different patterns of gene

activation is still lacking. Recent tools that enable the optoge-

netic control of specific signaling pathways (e.g., Ras/Erk)

(Wilson et al., 2017) will further our understanding of the conver-

gence of diverse neurotransmitter, neuromodulator, and neuro-

trophic factor signaling pathways in the activation of gene

transcription.

Once the cellular and behavioral features that lead to the in-

duction of activity-dependent gene programs in vivo are known,

establishing a causal role for activity-dependent transcription in

the representations of learned stimuli will be critical. Progress in

this endeavor will require a better understanding of the cell-type

specificity of the activity-dependent gene programs, followed by

the utilization of methods for genetically accessing and revers-

ibly inhibiting specific components of the activity-dependent

transcriptional network in a cell-type-specific manner and in

in vivo contexts.

The characterization and manipulation of the activity-regu-

lated transcriptional network should be facilitated by employing

next-generation single-cell sequencing and CRISPR/Cas9

gene-editing technologies to identify and then reversibly disrupt

the function of activity-regulated enhancers. These activity-

dependent enhancers represent the predominant genomic

modules for binding and regulation by activity-dependent TFs

and are critical for the fine-tuning of gene expression in diverse

cell types and contexts. However, the neuronal subtype-spe-

cific, activity-regulated enhancers that are differentially modu-

lated by various physiological behaviors have not been

comprehensively characterized. Moreover, the interactions of

active enhancer elements and their gene targets, including their

spatial organization within a cell, remain to be clarified. Efforts to

address these gaps in knowledge will be worthwhile as this in-

formation may allow us to target these enhancer elements to

manipulate the activity-dependent expression of a specific

gene without affecting the basal expression of the gene. Several

studies have underscored the promise of this approach (Hong
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et al., 2008; Joo et al., 2016; Smith-Hicks et al., 2010), which

should be greatly facilitated by CRISPR/Cas9 methodologies

in the next decade.

CRISPR/Cas9-mediated manipulations need not be restricted

to single enhancers or genes but have been shown to be

amenable to high-throughput, multiplexed, genome-scale inter-

rogations. For example, Perturb-seq, which combines pooled

CRISPR-based perturbations with scRNA-seq, has been

demonstrated to be a powerful tool for profiling and probing

the combinatorial, nonlinear effects of multiple transcription fac-

tors on gene expression signatures and cell states in

heterogeneous cell types (Adamson et al., 2016; Datlinger

et al., 2017; Dixit et al., 2016; Jaitin et al., 2016). This high-

throughput approach for probing gene regulatory networks

may be advantageous compared to classical loss- or gain-of-

function approaches that are sometimes limited due to TF redun-

dancy. These newer approaches have the potential to funda-

mentally advance our understanding of how the dynamic states

of the brain are generated by the molecular regulatory circuits of

heterogeneous cell types in the central nervous system.

As the coupling of synaptic activity to gene transcription is

conserved across species, it will also be important to use non-

human primate models and human neurons to uncover evolu-

tionary mechanisms that lead to the emergence of species-spe-

cific activity-dependent regulatory elements, protein-coding

genes, and non-coding RNAs that shape the human brain in

response to experience (Hardingham et al., 2018). Indeed,

several recent studies have begun to identify primate-specific

activity-regulated genes, such asOSTN, ZNF331, andCAMTA1,

and non-coding RNAs, such as LINC00473 (Ataman et al., 2016;

Pruunsild et al., 2017; Qiu et al., 2016). Importantly, a unifying

evolutionary mechanism emerged from these studies, namely

that the species evolution of activity-dependent transcription

arises from the acquisition of signal-dependent TF binding se-

quences in regulatory elements. Future progress in understand-

ing the signal-dependent transcriptional mechanisms underlying

cognitive abilities in humans will require characterization of

the human cell-type-specific activity-dependent transcriptomic

and epigenomic landscapes at single-cell resolution. While

in vitro studies have identified the function of several activity-

regulated genes, such as OSTN in the restriction of activity-

dependent dendritic growth, a major challenge for the future

would be in employing non-human primate models for in vivo

characterization of the function of the human activity-dependent

transcriptome.

In conclusion, future studies of activity-dependent transcrip-

tion will undoubtedly reveal deeper molecular insights, including

knowledge of the dynamic regulation of protein compositions at

single synapses, and the discovery of novel activity-regulated

chromatin complexes and their multidimensional organization

in the nucleus. At the cellular level, understanding the activity-

dependent transcriptional regulation of various developmental

and adaptive processes with greater cell-type and brain-region

specificity will also be essential. Unifying these molecular and

cellular studies with systems-level approaches for probing the

interdependent relationship between gene regulatory networks

and neural activity patterns that form the basis of integrated

motor, sensory, and cognitive functions will be a major frontier.
Finally, understanding the evolutionary forces that shape activ-

ity-dependent gene transcription in humans will complement

the decades of discoveries in simpler systems and hopefully

lead to effective treatments for human neurological and neuro-

psychiatric disorders.
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