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The diversity of cell types in the brain has largely precluded 
the characterization of cell-type-specific features of neuro-
developmental diseases. For X-linked neurodevelopmental 

disorders, this cellular heterogeneity poses an additional challenge 
in females, where random X-chromosome inactivation results in 
a mixture of wild-type and mutant cells within the brain of the  
same individual1.

These challenges are exemplified by Rett syndrome, an X-linked 
neurodevelopmental disorder predominantly affecting girls and char-
acterized by speech delay, repetitive hand movements, seizures, and 
autism-like behavior2. Rett syndrome is caused by mutations in the 
MECP2 gene on the X chromosome, and disease severity is thought 
to be correlated with the fraction of brain cells expressing the mutant 
allele after X-inactivation1,3. In individuals with Rett syndrome, neu-
ral circuits will thus consist of wild-type and mutant cells, raising 
the possibility that both cell-autonomous and non-cell-autonomous 
effects contribute to the pathophysiology of Rett syndrome at the cel-
lular and circuit levels. Better understanding of these effects of the 
MECP2 mutation will be critical for developing targeted therapeutics, 
but it has been difficult to distinguish gene expression in MECP2-
mutant neurons from that of normal neurons within the same brain.

MECP2 encodes a nuclear protein that is enriched in neurons, 
binds to methylated cytosines broadly across the genome, and has 
been suggested to act as a transcriptional repressor by recruiting 
co-repressor complexes (for example, NCOR) to sites of methyl-
ated DNA2,4–7. Consistent with this finding, we have found, in male 
mice where all cells express a single allele of Mecp2, that when 
MeCP2 function is disrupted, genes with the highest level of gene-
body DNA methylation and MeCP2-binding in wild-type neurons 
exhibit the largest degree of upregulation in gene expression in 
Mecp2-mutant neurons8–10. However, numerous reports have pro-
posed additional functions of MeCP2 at specific loci, including the 
regulation of mRNA splicing, transcriptional activation, and chro-
matin structure2,11–14. At present, it is not clear whether these effects 
are due to direct or indirect actions of MeCP2. Notably, since these 

previous studies of MeCP2 function have mostly focused on male 
hemizygous animals in which all cells lack functional MeCP2, the 
extent to which the effects observed in male mice accurately reflect 
the effects of MeCP2 loss in the mosaic brains of female heterozy-
gous mice or humans with Rett syndrome remains unclear.

The recent development of high-throughput single-cell RNA 
sequencing (scRNA-seq) technologies has revolutionized gene 
expression analysis of complex tissues and enabled the characteriza-
tion of cell-type-specific transcriptional programs in various brain 
regions in mice and humans15–17. While these advances have per-
mitted the identification and characterization of unique cell types 
within complex tissues, until now it has not been possible, even 
with scRNA-seq, to reliably distinguish between cells that express 
the wild-type or mutant allele in mosaic females with X-linked dis-
orders because the sequencing reads generated from single cells 
rarely include the disease-causing mutations. Here we describe 
an approach, single-cell single-nucleotide polymorphism (SNP) 
sequencing (SNP-seq), that reliably determines whether individual 
cells derived from mosaic murine and postmortem human brain 
express the wild-type or mutant X-chromosome allele, enabling 
gene expression profiles of wild-type and mutant cells from the 
same individual to be distinguished from each other. Using this 
approach, we found that in the brains of female heterozygous mouse 
models and humans with Rett syndrome, MECP2 selectively and 
cell-autonomously repressed the expression of highly methylated 
genes in a cell-type-specific manner in wild-type but not MECP2-
mutant neurons. The methods and analyses outlined here for Rett 
syndrome can be broadly applied to the characterization of gene 
expression patterns in additional mosaic X-linked disorders such 
as Fragile X syndrome, CDKL5 deficiency disorder, X-linked intel-
lectual disability, and multiple X-linked genetic causes of autism.

Results
Single-cell SNP sequencing in mouse models of Rett syndrome. 
Droplet-based high-throughput scRNA-seq methods employ  
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poly-A transcript selection in which the majority of sequence 
information is restricted to the distal 3′​ end of genes, a region that 
often does not include the disease-causing mutations under inves-
tigation15,16. Moreover, these methods typically sample a fraction 
of the total transcripts per cell, which further limits the ability to 
reliably detect the expressed mutant allele even when the variant 
of interest lies within the 3′​ sequenced region. For the same rea-
son, a failure to detect expression of a given gene in mutant cells is 
not a reliable way to discriminate between mutant and wild-type 
cells. However, we reasoned that SNPs that differ between the two 
X chromosomes and are within genes expressed in cis with the 
mutant allele might provide a reliable way to determine whether 
a given cell expresses the mutant or wild-type allele, hereafter 
defined as the cell’s transcriptotype.

To determine the utility of this approach, we first attempted to 
distinguish between cells expressing wild-type (WT) or mutant 
alleles in female Mecp2+/– mice. These mice were generated by 
deleting the majority of the Mecp2 gene (exons 3 and 4), and they 
recapitulate key features of Rett syndrome18. The absence of Mecp2 
expression is not a reliable indicator of a mutant cell, however, 
both because expression of the Mecp2 3′​ untranslated region is still 
detectable at low levels in mutant cells and because scRNA-seq only 
captures a fraction of genes per cell. Thus, we searched expressed 
genes for SNPs that were maintained in cis with the mutant Mecp2 
allele during the process of backcrossing the 129P2/OlaHsd strain 
of mice in which the Mecp2-mutant mice were generated. Despite 
extensive backcrossing ( >​ 38 generations at Jackson Labs) of the 
Mecp2-mutant mice with the C57BL/6 J strain, we identified four 
129P2/OlaHsd-specific SNPs in cis with the Mecp2-mutant allele 
that were present in the expressed 3′​ untranslated regions of two 
genes that are closely linked to Mecp2 and well sampled in the 
scRNA-seq datasets (Supplementary Fig. 1).

We performed scRNA-seq on visual cortex from 5 adult (12- 
to 20-week-old) female Mecp2+/– mice and obtained 12,451 cells 
that passed initial quality-control tests. Consistent with data from 
WT cortex19, cells from Mecp2+/– cortex were clustered into eight 
major cell types using the Seurat single-cell analysis pipeline20 

(Supplementary Fig. 2a). We focused on excitatory neurons because 
they have previously been directly implicated in Rett syndrome 
pathophysiology21,22 and are the most abundant cell type in our 
dataset (Fig. 1a). Sequencing reads encompassing the identified 
strain-specific SNPs allowed 1,289 of 5,761 excitatory neurons to 
be identified as expressing either the WT or mutant Mecp2 allele 
(Fig. 1b and Supplementary Fig. 2b). In support of the SNP-based 
transcriptotype classification, the resulting Mecp2-mutant popu-
lation of cells exhibited significantly reduced levels of the Mecp2 
transcript relative to WT cells or to groups of excitatory neurons 
with randomly assigned transcriptotypes (Fig. 1c). Gene expression 
analysis of the transcriptotyped mutant versus WT cells identified 
734 differentially expressed genes (366 that were upregulated, 368 
that were downregulated; false-discovery rate <​ 0.1; Supplementary 
Table 1). By contrast, only four significantly misregulated genes 
were identified when cell populations with randomly assigned tran-
scriptotypes were compared (Fig. 1d). These data indicate that we 
can successfully study gene expression in WT and mutant cells by 
single-cell SNP-seq, making it possible to address whether MeCP2 
function in mosaic females is accurately modeled in male hemizy-
gous mice in which all cells express the mutant form of the protein.

Previous reports in male mice indicate that gene bodies of MeCP2-
repressed genes are highly methylated, have increased levels of 
MeCP2-binding, and tend to be long compared to genes that are not 
repressed by MeCP28,10,23–25. These previous observations of MeCP2 
dysfunction provided a molecular signature for assessing the abil-
ity of scRNA-seq data to detect relevant gene expression changes in 
mosaic tissue. Consistent with previous observations, we found that 
in mosaic female mice the degree of gene upregulation in Mecp2-
mutant compared to WT excitatory neurons directly correlated with 
gene body DNA methylation (Pearson’s r =​ 0.38), as well as with the  
length of highly methylated genes (Pearson’s r =​ 0.10; Fig. 1e,g).  
In the brains of mosaic female Mecp2+/– mice, we also observed that 
the degree of gene upregulation in mutant-expressing excitatory 
neurons directly correlated with increasing levels of gene-body 
MeCP2-binding in excitatory neurons (chromatin immunoprecipi-
tation (ChIP)1, Pearson’s r =​ 0.41; ChIP2, Pearson’s r =​ 0.31; Fig. 1f).  

Fig. 1 | Single-cell SNP sequencing in a female mouse model of Rett syndrome. a, Flow chart of single-cell SNP sequencing pipeline. scRNA-seq was 
performed on visual cortex from 5 female Mecp2+/– mice followed by graph clustering to identify the group of excitatory neurons (Slc17a7+). Allele-specific 
SNPs in genes expressed in cis with the Mecp2 mutation were identified by variant-calling and then used to assign the corresponding transcriptotype to 
the individually sequenced cells. Xa, active X chromosome; Xi, inactive X chromosome. b, Heatmap of reads per analyzed cell (rows of the heatmap) that 
map to WT- or knockout (KO)-specific SNPs (columns of the heatmap). c, Violin plots of Mecp2 mRNA counts per cell in cells that were grouped based on 
their SNP-identified transcriptotype (WT, Mecp2+/– WT excitatory neurons; KO, Mecp2+/– mutant excitatory neurons; tails represent minima and maxima 
of data) or by randomly assigned transcriptotypes (Random 1, Random 2). Mecp2 expression was significantly higher in the WT cells (sampled n =​ 593) 
compared to KO cells (n =​ 593; Kruskal–Wallis test, H =​ 210, ****P <​ 0.0001, +​ indicates mean) and compared to the populations with randomly assigned 
transcriptotypes (Random 1, n =​ 593, Random 2, n =​ 593; ****P <​ 0.0001). The groups with randomly assigned transcriptotypes had similar levels of Mecp2 
expression (P >​ 0.9999). For the transcriptotyped excitatory neurons, we obtained an average of 7,634 transcripts per cell, representing 3,879 distinct 
genes. d, The number of significantly misregulated genes (false-discovery rate (FDR) <​ 0.1, monocle2) when comparing gene expression differences 
between groups of mutant and WT excitatory neurons (KO vs. WT, 734 genes) or two groups of randomly assigned transcriptotypes (Random, 4 genes). 
e, The mean fold-changes of the misregulated genes described in d (KO vs. WT, Random) are displayed as a function of excitatory neuron gene body 
DNA methylation (mCA/CA; KO vs. WT, Pearson’s r =​ 0.38; Random, Pearson’s r =​ 0.04). The correlation between MeCP2-dependent gene expression 
and mCA/CA was significantly greater in KO vs. WT than Random (permutation test, P <​ 0.001). f, The fold-change of genes in d (KO vs. WT, Random) 
binned by gene-body MeCP2 ChIP enrichment over input. The correlations between MeCP2-dependent gene expression and two MeCP2 ChIP replicates 
from purified cortical excitatory neurons (ChIP1, Pearson’s r =​ 0.41; ChIP2, Pearson’s r =​ 0.31) are significantly greater than the correlations observed in 
the Random controls (Random ChIP 1, Pearson’s r =​ 0.06; Random ChIP 2, Pearson’s r =​ 0.04; permutation test, P <​ 0.001). g, Mean fold-change in gene 
expression of mutant excitatory neurons (KO) compared to WT excitatory neurons (WT) from Mecp2+/– mice, with genes separated into groups of highly 
methylated genes (normalized expression >​ 0.1, high mCA, top 25%) or lowly methylated genes (normalized expression >​ 0.1, low mCA, bottom 66%) and 
binned by their gene length. The use of all genes with normalized expression >​ 0.1 provided sufficient gene numbers to separate into groups of high and 
low mCA. MeCP2-dependent gene expression and gene length were significantly more correlated in KO vs. WT than Random for high mCA genes (KO vs. 
WT, Pearson’s r =​ 0.10, Random, Pearson’s r =​ 0.00, permutation test P <​ 0.001). The correlations between MeCP2-dependent gene expression and gene 
length were not statistically different between KO vs. WT and Random for low mCA genes (KO vs. WT, Pearson’s r =​ 0.04, Random, Pearson’s r =​ 0.02, 
permutation test P =​ 0.23). In e–g, lines represent mean fold-change in expression for genes binned according to gene length (250 bins, 25-gene step), 
methylation (100 bins, 10-gene step), or MeCP2 enrichment (100 bins, 10-gene step); ribbon displays s.e.m. of each bin.
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MeCP2 binding was characterized by ChIP of MeCP2 in CaMKIIα​
-positive excitatory neurons isolated from WT male mice using 
INTACT, a method in which genetically tagged nuclei can be 
immunopurified26. These findings suggest that upregulation of 
highly methylated genes is a cell-autonomous signature of MeCP2 
dysfunction, consistent with the observation that Rett syndrome 
severity correlates with the number of Mecp2-mutant cells1. Notably, 
the differentially expressed genes between mutant and WT excit-
atory neurons within mosaic female heterozygous mice significantly 
overlapped with the misregulated genes we identified when com-
paring excitatory neurons from male Mecp2-mutant mice and their 
WT controls (hypergeometric test, P =​ 7.2 ×​ 10–14; Supplementary 
Fig. 3 and Supplementary Tables 2–5). Thus, by resolving mosaicism 
with single-cell SNP-seq in a female mouse model of Rett syndrome 

and comparing the patterns of cell-type-specific gene misregulation 
to those of male mouse models (Supplementary Fig. 4), we have 
identified a reproducible set of cell-autonomous MeCP2-dependent 
genes in excitatory neurons.

While our data indicate that the relationships between MeCP2-
dependent gene expression and gene-body DNA methylation, 
MeCP2 occupancy, and gene length are cell-autonomous, it has been 
difficult to determine whether there are also non-cell-autonomous 
effects of Mecp2-mutant cells on WT cells within the same tissue. 
Previous attempts to identify such effects have relied on tagged forms 
of MeCP2 that were not expressed at normal levels27. We overcame 
these challenges by using scRNA-seq to compare WT excitatory 
neurons (671 cells) from 5 female Mecp2+/– mice with WT excit-
atory neurons from 4 female Mecp2+/+ control mice (671 sampled  
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cells). We observed 233 differentially expressed genes (false-dis-
covery rate <​ 0.1) between these conditions, many of which involve 
key neuronal processes, such as neuronal activity-dependent gene 
expression and neurotrophin signaling (Supplementary Table 6). 
Notably, these differentially expressed genes between WT cells from 
Mecp2+/– and Mecp2+/+ mice do not appear to be directly repressed 
by MeCP2 (for example, their degree of gene misregulation does 
not correlate with the level of gene body DNA methylation (per-
mutation test, P =​ 0.55) or gene length (permutation test, P =​ 0.73); 
Supplementary Fig. 5). These data suggest that gene expression 
abnormalities are present in WT cells from Mecp2+/– mice and are 
likely due to indirect effects of neighboring Mecp2-mutant cells. 
This non-cell-autonomous misregulation of gene expression in WT 
neurons of mosaic individuals with Rett syndrome could, in prin-
ciple, contribute to disease pathophysiology.

Single-nucleus SNP sequencing of human Rett brain tissue.
Given the successful implementation of single-cell SNP-seq in 
rodent models of Rett syndrome, we reasoned that this method 
could also be used to characterize MECP2-dependent gene expres-
sion changes in postmortem human Rett brain tissue. This approach 
is potentially powerful because mutant and WT cells of the same 
age and genetic background can be compared directly in a single 
experiment, largely eliminating the transcriptional consequences 
of genetic variation that are introduced when comparing donor 
samples to unrelated age-matched controls (an especially important 
advantage in the study of Rett syndrome, where the differences in 
gene expression are expected to be small in magnitude2).

We performed single-nucleus RNA sequencing on occipi-
tal cortex from 3 postmortem females with Rett syndrome, 
each harboring the second-most-common nonsense mutation 
(c.763 C >​ T) in a single MECP2 allele that generates the R255X 
truncated gene product lacking the MECP2 transcriptional repres-
sor domain (Supplementary Fig. 6). We isolated nuclei for these 
experiments because nuclei are more reliably extracted than entire 
cells from postmortem tissue samples and can provide sufficient 
gene expression information for cell-type classification and anal-
ysis28. We successfully sequenced a total of 43,558 nuclei, with 
30,293 nuclei passing the minimum required threshold of 500 
uniquely expressed genes. In line with previous single-cell and 
single-nucleus RNA-seq experiments15,16,19, the nuclei analyzed 
had an average of 2,800 transcripts per nucleus from 1,671 unique 
genes. Using Seurat20 and known excitatory neuron and interneu-
ron marker genes19, the nuclei clustered into a large excitatory neu-
ron population (18,545 nuclei) and multiple distinct interneuron 
populations (5,952 nuclei total; Fig. 2a). The heterogeneity of cells 
in the interneuron cluster prompted us to further subdivide this 
population into their known functional classes by the expression 
of specific marker genes (for example, VIP, PVALB, SST, or CCK; 
Fig. 2a and Supplementary Fig. 7).

Once each nucleus was assigned to its respective cell type clus-
ter, we next turned to identifying its transcriptotype. Because 
there were no sequencing reads that included the R255 position 
of MECP2, we reasoned that the large number of SNPs that dif-
fer between an individual’s two X chromosomes might allow us to 
identify allele-specific SNPs that are in cis with the mutant MECP2 
locus and therefore expressed only in MECP2-mutant neurons. 
To identify the transcriptotype-specific SNPs in each Rett donor, 
we took advantage of an MECP2-specific antibody that was raised 
against a region of the C terminus truncated by the R255X muta-
tion. We used this antibody to separate high-staining (MECP2high) 
and low-staining (MECP2low) nuclei by fluorescence-activated sort-
ing (Fig. 2b). Sanger sequencing of isolated cDNA from the two 
populations confirmed that the MECP2high population expressed 
WT MECP2 and that the MECP2low population expressed the 
R255X mutant MECP2.

Having isolated the two populations from each donor, we next 
performed total RNA sequencing on both populations and iden-
tified 69–75 allele-specific SNPs that were uniquely expressed 
in MECP2high nuclei (Supplementary Fig. 8 and see Methods). 
Expression of these allele- and transcriptotype-specific SNPs was 
then queried in the corresponding single-nucleus RNA-seq dataset 
from the same donor sample and used to assign the corresponding 
WT or R255X MECP2 transcriptotypes (Fig. 2c). Using the allele-
specific SNPs identified from each Rett donor, we could assign tran-
scriptotypes to 16,627 nuclei, or 55% of the nuclei assayed (Fig. 2d); 
the remaining 45% of nuclei were excluded from further analysis. 
The ratio of WT to mutant nuclei was approximately even across 
the three donor samples (donor 1 =​ 49% WT, 51% R255X; donor 
2 =​ 51% WT, 49% R255X; donor 3 =​ 42% WT, 58% R255X), which 
suggests that there was not substantial skewing of X-chromosome 
inactivation and that Rett syndrome in the three donors is likely due 
to the loss of MECP2 function in approximately 50% of brain cells.

For subsequent analyses, we focused on the excitatory neuron 
population (SLC17A7-expressing, 18,545 cells) and on the most 
abundant subtype of interneurons in our datasets (VIP-expressing, 
1,839 cells; Fig. 2a). Notably, the neuronal subtype clusters were 
similar between WT and mutant cells (Supplementary Fig. 9a), 
enabling direct comparison of gene expression between WT 
and mutant cells of the same neuronal subtype. To maximize the 
number of nuclei and statistical power for cell-type-specific gene 
expression comparisons, we combined nuclei of the same neuro-
nal subtype and transcriptotype from the three Rett donors. We 
identified significant gene expression differences between mutant 
and WT excitatory neurons (3,158 genes, Supplementary Table 7)  
and VIP interneurons (237 genes, Supplementary Table 8; Fig. 2e). 
Notably, these findings were dependent on proper transcripto-
type assignment, as gene expression analysis between populations 
of cells that were randomly assigned transcriptotypes consistently 
recovered ≤​10 differentially expressed genes (Fig. 2e). It should be 
noted that the difference in numbers of significantly misregulated 
genes between excitatory neurons and VIP interneurons is largely 
attributable to the greater number of excitatory nuclei sampled with 
higher transcript coverage, because the numbers of misregulated 
genes were similar in excitatory and VIP interneurons when equal 
numbers of nuclei and transcripts were sampled for both cell types 
(Supplementary Fig. 9b).

Cell-type-specific DNA methylation patterns predict gene mis-
regulation in Rett syndrome. These new human datasets provided 
the opportunity to determine whether features described in mouse 
models regarding MECP2-dependent gene expression are also 
observed in neurons from human individuals with Rett syndrome. 
It is not known, for example, whether in fact MECP2 in human neu-
rons represses highly methylated long genes in a neuronal-subtype-
specific manner, as has been observed in mice8,10,25. In mice, DNA 
methylation in both the CG and CA dinucleotide contexts recruits 
MeCP2 binding and contributes to MeCP2-dependent gene repres-
sion8,29. While both CG and non-CG methylation (mCH, which 
consists of CA, CT, and CC methylation) display cell-type-specific 
patterns, mCH is more divergent across neuronal cell types26,30 and, 
in mice, contributes to cell-type-specific MeCP2-dependent gene 
repression31. To determine whether cell-type-specific patterns of 
mCH predict the degree of MECP2-dependent gene repression in 
human females with Rett syndrome, we compared the set of genes 
that are differentially expressed in human female MECP2-mutant-
expressing and WT-expressing nuclei with recently published 
human single-cell methylation data from cerebral cortex32. We 
found that, in humans, the degree of gene misregulation in MECP2-
mutant compared to WT excitatory neurons and VIP interneu-
rons was directly correlated with the level of gene body mCH in 
neurons of the respective subtype (excitatory neurons, Pearson’s 
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r =​ 0.22; VIP interneurons, Pearson’s r =​ 0.18; Fig. 3a,e). These cor-
relations were dependent on the correct assignment of transcripto-
type, as gene expression differences between groups of randomly 
assigned transcriptotypes did not correlate with gene body mCH for 
either excitatory neurons (Pearson’s r =​ –0.01) or VIP interneurons 
(Pearson’s r =​ –0.05). The relationship between neuronal-subtype-
specific mCH and MECP2-dependent gene expression was highly 
reproducible and could be observed in each of the three donor sam-
ples by directly comparing MECP2-mutant and WT neurons from 
the same individual (Supplementary Fig. 10). The direct correlation 
between MECP2-dependent gene repression and gene-body mCH 
for each neuronal subtype depended on its subtype-specific DNA 
methylation patterns, as MECP2-dependent gene repression in 
excitatory neurons did not correlate with the extent of gene-body 
mCH from VIP interneurons (Pearson’s r =​ –0.01; Fig. 3b), and 
MECP2-dependent gene repression in VIP interneurons poorly 
correlated with mCH from excitatory neurons (Pearson’s r =​ 0.05; 
Fig. 3d). Of note, the direct correlation between MECP2-dependent 
gene repression and DNA methylation was also observed in the CG 
dinucleotide context in both excitatory neurons and VIP interneu-
rons (Supplementary Fig. 11).

As described above, for highly methylated genes, gene length 
predicts the degree of gene upregulation in Mecp2-mutant mice 
compared with their WT counterparts10. Consistent with this obser-
vation, we found that in humans with Rett syndrome the level of 
gene-body methylation together with gene length predicted the 
degree of gene upregulation in both MECP2-mutant excitatory and 
VIP interneuronal nuclei (Fig. 3c,f). We further found that in human 
females, as in mice, gene length did not positively correlate with 
MECP2-dependent gene repression for lowly methylated genes, 
underscoring the importance of accounting for DNA methylation 
in the analysis of MECP2-dependent gene regulation in humans8,10. 
These findings in human females with Rett syndrome are consistent 
with our findings in male and female Mecp2-mutant mouse models 
and indicate that MeCP2 acts through an evolutionarily conserved, 
cell-autonomous mechanism to preferentially repress the expres-
sion of highly methylated long genes.

The large number of excitatory neuronal nuclei sequenced from 
each individual provided sufficient power to study gene expres-
sion differences between mutant and WT nuclei of this neuronal 
subtype within the same individual’s brain (Supplementary Tables 
9–14), thus eliminating much of the genetic and environmental 
heterogeneity inherent to previous studies of MECP2-dependent 
gene expression33,34. We were thus able to identify genes that were 
consistently misregulated in mutant excitatory neurons across all 
three Rett syndrome donors. This analysis demonstrated a highly 
significant overlap in affected genes across the three Rett donor 
samples, identifying 537 genes that were consistently upregulated 
in MECP2-mutant excitatory neurons compared to WT neurons 
and 395 genes that were reproducibly downregulated (Fig. 4a, 
Supplementary Fig. 12, and Supplementary Table 15). The upregu-
lated genes had significantly higher levels of gene body methyla-
tion than the downregulated genes (Fig. 4b). Genes that control 
metabolism or regulate neuronal processes such as ion transport or 
nervous system development were significantly enriched in the set 
of upregulated or downregulated genes (Fig. 4c,d), and misregula-
tion of these genes may contribute to the metabolic and neuronal 
deficits observed in Rett syndrome35. The ability of single-nucleus 
SNP-seq to reliably transcriptotype and reproducibly identify gene 
expression changes between mutant and WT cells within the same 
individual largely overcomes the previous reliance on age-matched 
controls for molecular characterization of mosaic X-linked disor-
ders, and will substantially improve our ability to distinguish gene 
expression differences that are due directly to the mutation under 
investigation rather than to unrelated genomic variation between 
cases and controls.

We next sought to identify genes that are controlled by MECP2 
in both humans and mice, reasoning that despite the major spe-
cies differences, the evolutionarily conserved MECP2 targets might 
provide an opportunity to investigate MECP2 function in mouse 
models that are relevant to human pathophysiology. To this end, 
we identified the upregulated or downregulated genes in excitatory 
neurons across all three Rett syndrome donor samples (537 and 395 
genes, respectively) and asked which of these were also significantly 
misregulated in female Mecp2+/– excitatory neurons from mice. We 
identified 58 evolutionarily conserved genes that were upregulated 
and 84 genes that were downregulated in MECP2-mutant com-
pared to WT excitatory neurons in both mouse and human (Fig. 4e,  
Supplementary Fig. 13, and Supplementary Tables 16 and 17).  
These evolutionarily conserved MECP2-regulated genes repre-
sented high-confidence MECP2 targets in excitatory neurons 
because of their reproducibility across multiple datasets. However, 
we stress that deeper sequencing would provide greater statistical 
power and the ability to identify many additional evolutionarily 
conserved MECP2 targets. We note that the high-confidence evo-
lutionarily conserved genes identified here that were upregulated 
in MECP2-mutant excitatory neurons had significantly higher lev-
els of gene-body DNA methylation than the set of genes that were 
downregulated in MECP2-mutant neurons (Fig. 4f), suggesting 
that the upregulated gene set may be enriched for direct MECP2 
targets. However, it seems likely that the misregulation of both 
MECP2-repressed and MECP2-activated genes contribute to Rett 
syndrome pathophysiology, as 25% of the MECP2-repressed genes 
(enrichment P =​ 1.0 ×​ 10–6, hypergeometric test) and 13% of the 
MECP2-activated genes (enrichment P =​ 0.02, hypergeometric test) 
have been previously shown to be mutated in intellectual disabil-
ity or autism (see Methods). Many of the MECP2-repressed genes 
(for example, AUTS2 and RBFOX1) encode transcriptional regula-
tors that are known to control neuronal gene expression36–38. The 
MECP2-repressed genes that encode neuronal ion channels such as 
GABRA1 and SCN1B are known to cause epilepsy when mutated39,40, 
and thus they could contribute to this comorbidity in individuals 
with Rett syndrome. The evolutionarily conserved genes that were 
downregulated in MECP2-mutant neurons included the neuro-
trophin BDNF and the presynaptic adhesion molecule NRXN2, both 
of which have also been shown to contribute to neurological disor-
ders when mutated41,42. Given that the selective disruption of Mecp2 
in excitatory neurons is sufficient to cause Rett-like phenotypes in 
mice22, further investigation of evolutionarily conserved MECP2-
regulated genes in this cell type could both yield new mechanistic 
insight into MECP2 function and help characterize the role of these 
genes in specific aspects of Rett syndrome pathophysiology.

Discussion
Here we present a new experimental approach that leverages 
the power of single-cell or single-nucleus RNA sequencing and 
individual genetic variation to simultaneously characterize cell-
type-specific gene expression and allele-specific X-chromosome 
activation status in individual cells within mosaic mouse and 
human brains. This approach has broad applicability for study-
ing gene expression abnormalities in X-linked neurodevelopmen-
tal disorders such as Rett syndrome, Fragile X syndrome, CDKL5 
deficiency disorder, X-linked intellectual disability, and multiple 
X-linked genetic causes of autism (for example, NLGN3, NLGN4, 
SLC6A8, PLXNA3, DDX3X, WDR45, and CASK) in females where 
mosaicism between WT and mutant cells has hindered previous 
analyses. This method can be easily adapted (see Methods) to 
female mouse models of X-linked disorders generated in mixed 
genetic backgrounds by using strain-specific SNPs to identify the 
cells expressing the mutant allele. Moreover, this approach is par-
ticularly useful for studying mosaic disorders in human samples 
because the wealth of natural genetic variation across individuals 
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provides many opportunities to identify allele-specific SNPs that 
are expressed from the same X-chromosome as the mutant allele 
under investigation43,44. Indeed, SNPs have been recently used in 
conjunction with scRNA-seq data to determine the sample identity 
of individual cells within a pool of human samples44 and to study 
genes that escape X-chromosome inactivation45.

In addition to validating the single-cell SNP-seq approach, our 
study provides further insight into important aspects of Rett syn-
drome pathophysiology and the consequences of MECP2 dys-
function. The inherent X-linked mosaicism in females with Rett 
syndrome has hampered prior efforts to determine whether genes 
that are differentially expressed in Rett and age-matched controls are 
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due to the MECP2 mutation itself or a consequence of genetic and 
environmental variation between individuals. Our study overcame 
these limitations and directly assessed the MECP2-dependent gene 
expression changes in the same cell type and genetic background. We 
found that cell-type-specific patterns of DNA methylation largely 
predicted the degree of gene upregulation within each subtype of 
mutant MECP2 (R255X)-expressing neuron from humans with Rett 
syndrome. Notably, our approach confirmed that the preferential 
upregulation of highly methylated long genes is a cell-autonomous 
molecular signature of MECP2 dysfunction, conserved between 
MeCP2-mutant mouse models and humans with Rett syndrome.

The relative contribution of gene length and DNA methylation 
to MECP2-dependent gene regulation is complex because long 
genes tend to have a higher level of gene-body methylation com-
pared to shorter genes10 (Supplementary Fig. 14). Partial correla-
tion analysis was previously used to parse the relative contribution 
of gene length and DNA methylation to MeCP2-dependent gene 
regulation in mouse cortical tissue, and it was observed that the 
total number of gene-body methylcytosine binding sites within a 
given gene, rather than gene length alone, best predicts MECP2-
dependent gene repression8. While our scRNA-seq data suggest a 
role for MECP2 in regulating cell-type-specific gene expression in 
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a DNA methylation-dependent manner, MeCP2-dependent gene 
expression also correlates with DNA methylation patterns in whole 
cortical tissue10,24. This finding is likely explained both by an averag-
ing effect due to the most abundant cell type driving the observed 
DNA methylation and gene expression patterns and the presence of 
commonly methylated regions that would be expected to result in 
similar MECP2-dependent gene expression across cell types.

The power of single-cell and single-nucleus RNA sequencing 
to identify MECP2-regulated genes in a given individual with Rett 
syndrome and in specific cell types enabled the identification of 
MECP2-repressed genes and MECP2-activated genes that are evo-
lutionarily conserved in both mouse and human excitatory neu-
rons. While deeper single-cell sequencing will provide the statistical 

power necessary to identify many additional conserved MECP2-
regulated genes, the set of genes described here has the potential 
to provide new insight into Rett syndrome pathophysiology and 
provides an opportunity to link mechanistic studies of MECP2 
function in mouse models to Rett syndrome in humans. Notably, 
the conserved MECP2-repressed genes had significantly higher 
levels of gene body DNA methylation than the set of conserved 
MECP2-activated genes (Fig. 4f). The high levels of DNA methyla-
tion within the transcribed region of these MECP2-repressed genes, 
taken together with abundant evidence that MECP2 binds prefer-
entially to methylcytosines10,29, suggest that the conserved MECP2-
repressed genes are direct targets of MECP2. However, it remains to 
be determined whether the conserved genes downregulated in the 
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absence of MECP2 are downregulated due to a secondary change in 
neurons that occurred as a consequence of the disrupted expression 
of highly methylated genes or whether these genes were activated 
directly by MECP2 via a distinct mechanism. It should be noted 
that a previous report suggested that MeCP2 may regulate long gene 
expression through a post-transcriptional mechanism, but in this 
previous study, gene body DNA methylation was not considered27. 
Reanalysis of the data in this study with respect to DNA methylation 
supports the conclusion that MeCP2 represses gene expression at 
the level of transcription (Supplementary Fig. 15). Additional stud-
ies into the regulation of nuclear or nascent RNA by MeCP2 will 
likely reveal valuable new insights into MeCP2′​s function.

It remains challenging to reconcile the small magnitude of 
misregulation that occurs for an individual gene when MECP2 is 
mutated with the dramatic neurological sequelae of Rett syndrome. 
It is possible that the deleterious effect of mutating MECP2 may 
summate across hundreds to thousands of genes to cause Rett 
syndrome10 or that only a small subset of the misregulated genes 
are responsible for the neurological phenotypes. It is also possible 
that the kinetics of gene transcription (for example, elongation 
rates) are altered in the absence of MECP2, which could result in 
abnormal timing of transcriptional programs in addition to sub-
tle changes in steady-state gene expression9. Further study of the 
proximal mechanisms by which MECP2 regulates gene expression 
is needed to identify therapeutic approaches for normalizing the 
diverse gene-expression abnormalities that occur across cell types 
in Rett syndrome.

Taken together, we have shown that single-cell and single-
nucleus SNP-seq enables cell-type-specific characterization of gene 
expression in mosaic mouse models and post-mortem tissue of 
human brain donors. Here we have leveraged this approach to glean 
new insights into Rett syndrome pathophysiology, and in the future, 
we envision its broad application to the study of additional X-linked 
disorders in both the brain and other tissues.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
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Methods
Mice. All animal experiments were approved by the National Institutes of Health 
and the Harvard Medical School Institutional Animal Care and Use Committee 
and were conducted in compliance with the relevant ethical regulations. Male and 
female Mecp2-knockout mice and their wild-type controls were obtained from 
Jackson Labs (Stock No. 003890). This line was originally generated by Adrian 
Bird18. Mice were housed under a standard 12-h light cycle before being placed in 
constant darkness for 7 d before they were killed for analysis. Mecp2-mutant mice 
all demonstrated decreased locomotor activity at time of analysis; male mice were  
8 weeks old and female mice were 12–20 weeks old. Mice of the respective 
genotype, age, and sex were randomly selected for inclusion in the study.

Brain tissue samples from donors with Rett syndrome. Postmortem cortical 
tissue (visual cortex, BA17) was obtained from the National Institutes of Health 
NeuroBioBank and Harvard Brain Bank with approval from the coordinating 
foundation, Rettsyndrome.org. The study was conducted in compliance with 
relevant consent and ethical considerations. Work was approved by Harvard 
Medical School and is compliant with all ethical regulations. Rett donor samples 
were genotyped by the NeuroBioBank/Harvard Brain Bank and were confirmed by 
Sanger sequencing.

Single-cell isolation from male and female mouse cortex. Single-cell suspensions 
from adult male and female visual cortex were prepared as described19. Briefly, 
mice were euthanized with isoflurane and perfused with an ice-cold choline 
solution. Visual cortices were dissected, chopped into 300 μ​m fragments, and 
dissociated with papain (Worthington). Cells were then triturated into a single-cell 
suspension and collected by gradient centrifugation.

Single-nuclei isolation from human postmortem cortex. Single nuclei 
suspensions from postmortem human occipital cortex were collected as described 
previously26 with minor modifications. Cortical tissue was removed from dry ice 
and placed directly into a dounce with homogenization buffer (0.25 M sucrose, 
25 mM KCl, 5 mM MgCl2, 20 mM tricine-KOH, pH 7.8, 1 mM DTT, 0.15 mM 
spermine, 0.5 mM spermidine, protease inhibitors, 5 μ​g/mL actinomycin, and 
0.04% BSA). After ten strokes with the tight pestle, a 5% IGEPAL (Sigma) solution 
was added to a final concentration of 0.32% and five additional strokes with the 
tight pestle were performed. The tissue homogenate was then passed through a 
40-μ​m filter, and diluted 1:1 with OptiPrep and layered onto an OptiPrep gradient 
as described previously26. After ultracentrifugation, nuclei were collected between 
the 30 and 40% OptiPrep layers, confirmed to be single nuclei, and diluted to 
80,000 nuclei/mL for inDrops. All buffers and gradient solutions for nuclei 
extraction contained RNAsin (Promega) and 0.04% BSA.

Nuclei sorting and RNA sequencing. Cortical tissue from each Rett donor was 
dounce homogenized in buffer HB (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 
20 mM tricine-KOH pH 7.8, 1 mM DTT, 0.15 mM spermine, 0.5 mM spermidine, 
and protease inhibitors). A 5% IGEPAL solution was added to a final concentration 
of 0.16% followed by five additional dounce strokes, and then the lysate was 
filtered through a 40 μ​m strainer. Nuclei were pelleted by centrifuging at 500 g 
for 5 min at 4 °C and washed once with PBS with 1% BSA. To stain nuclei for 
sorting, nuclei were incubated with a C-terminal MeCP2 antibody46 at 1:500 for 
1 h at 4 °C, washed once with wash buffer (PBS with 1% BSA and 0.16% IGEPAL), 
incubated with a goat anti-rabbit 647 secondary antibody (Life Technologies, 
cat# A21244) at 1:500 for 30 min at 4 °C, then washed once with wash buffer. All 
washes were performed by centrifuging at 500 g for 5 min at 4 °C. Nuclei were then 
resuspended in PBS with 1% BSA and sorted on a Sony SH800Z Cell Sorter (100 μ​
m nozzle, default laser settings). Nuclei were sorted into Trizol LS (Invitrogen), 
and total RNA was chloroform extracted and purified with the Qiagen RNeasy 
Micro Kit with on-column DNase treatment. For Sanger sequencing of the MECP2 
R255X mutation, cDNA was generated with the SuperScript III First-strand 
Synthesis System (Invitrogen). The MECP2 R255X region was amplified with Q5 
Hot Start High-Fidelity Master Mix (NEB) with the following primers: MECP2 
R255X forward: AAGATGCCTTTTCAAACTTCG and MECP2 R255X reverse: 
CCCAGGGCTCTTACAGGTCT, and Sanger sequencing was performed with 
the MECP2 R255X reverse primer at the DF/HCC DNA Sequencing Facility. To 
identify monoallelic SNPs in the two populations of nuclei, total RNA-seq libraries 
were generated with the NEBNext Ultra Directional Library Prep Kit with rRNA 
depletion. Libraries were sequenced on an Illumina NextSeq 500 with 85-bp single-
end reads. Reads were mapped to the hg38 genome with Tophat2.

Single-cell/single-nucleus RNA sequencing (inDrops). Single-cell or single-
nuclei suspensions were encapsulated into droplets and lysed, and the RNA 
within each droplet was reverse-transcribed using a unique nucleotide barcode as 
described previously15. Cell or nuclei encapsulation was performed in a blinded 
fashion. Approximately 3,000 cells were processed per library and sequenced on an 
Illumina NextSeq 500 to achieve at least five reads on average per unique molecular 
index (typically about 500 million reads per 30,000 droplets collected by inDrops). 
Transcripts were processed and mapped using a previously described pipeline15. 

Briefly, a custom transcriptome was built from Ensembl GRCh38 (GRCm38.85 
annotation) and GRCm38 (GRCm38.84 annotation) with the referenced pipeline.

Quality control for cell or nuclei inclusion. Cells or nuclei with more than 500 
unique genes detected per cell were included for further consideration. Cells or 
nuclei with more than 15,000 unique molecular identifiers detected were omitted 
to minimize inclusion of data that represented the common barcoding of two or 
more cells.

Cell-type identification by dimensionality reduction. We used the R package 
Seurat20 to cluster cells based on similar gene expression profiles. The raw counts 
obtained from the mapping pipeline described above were log-normalized 
and scaled to 10,000 transcripts per cell. Variable genes were identified by the 
MeanVariablePlot() function with the following parameters: x.low.cutoff =​ 0.0125, 
x.high.cutoff =​ 3, y.cutoff =​ 0.5. Principal component analysis was then performed, 
and the top 30 principal components were used for the FindClusters() function 
(kNN clustering) and RunTSNE function (for t-distributed stochastic neighbor 
embedding). Clusters with fewer than 100 cells were omitted from further analysis. 
Classifications of cell types were determined by visualizing known marker gene 
expression within each identified cluster. Excitatory neurons were marked by the 
expression of vesicular glutamate transporter 1 (Slc17a7) and calcium/calmodulin-
dependent protein kinase II alpha (Camk2a). Interneurons were marked by 
glutamate decarboxylase 1 (Gad1), and were further separated into three major 
subtypes by the expression of parvalbumin (Pvalb), vasoactive intestinal peptide 
(Vip), or somatostatin (Sst). Astrocytes were marked by the expression of aldolase 
dehydrogenase (Aldoc), oligodendrocytes by the expression of Olig1, microglia 
by the expression of Cx3cr1, and endothelial cells by the expression of Cldn5. 
Cells expressing significant levels of two or more of the above marker genes were 
considered doublets and discarded from further analysis.

General approach to single-cell/nucleus SNP sequencing. There are four 
general strategies for identifying SNPs in genes expressed in cis with the mutant 
or wild-type form of a gene. (i) Identify cells that have transcripts covering the 
mutated genomic region of interest. Because of low per-cell sequencing coverage, 
it is rare for an individual cell to have coverage of this precise genomic region 
to directly determine its transcriptotype. Therefore, the few definitively mutant 
and wild-type cells can be used to search for genomic variation in the expressed 
X-chromosome genes between mutant and wild-type cells. This provides a set of 
allele-specific SNPs that can be used in addition to the gene of interest itself to 
increase the likelihood that a given cell can be transcriptotyped. (ii) Long-read 
DNA sequencing to directly confirm which SNPs are in cis with the wild-type 
and mutant gene of interest. This approach would start by identifying SNPs in the 
single-cell RNA sequencing dataset (for example, half of the reads mapping to the 
reference nucleotide and the other half mapping to an alternate nucleotide) and 
perform long-read DNA sequencing (for example, Pacific Biosciences, Oxford 
Nanopore) to directly confirm which neighboring SNPs are in cis. Once the allele 
containing a SNP is confirmed to be expressed in cis with either the wild-type or 
mutant allele of interest, this SNP can be used in turn to identify additional allele-
specific SNPs as described in approach i. (iii) Identify SNPs that are in cis with the 
mutant allele by sequencing members of the donor’s family. For example, if the 
mutation is inherited, DNA sequencing of the X-chromosome of each parent can 
provide the set of allele-specific SNPs that are unique to the wild-type or mutant 
alleles. This approach has been employed to catalog X-chromosome inactivation 
status of human cells45 and is the approach we used for the analysis of the Mecp2-
mutant mouse. (iv) Separate wild-type and mutant cells from an individual sample 
and perform deep RNA sequencing to identify the set of expressed SNPs that are 
unique to the wild-type or mutant population of cells. This is the approach we used 
to transcriptotype cells from the human Rett syndrome brain donors.

An additional consideration when implementing single-cell SNP sequencing 
to study X-linked disorders is that some X-linked disease-causing genes escape 
X-chromosome inactivation (for example, IQSEC2). In these cases, both the 
mutant and wild-type allele will be expressed in each cell. Therefore, it is important 
to assess the X-inactivation status of the gene under investigation to ensure it is 
not biallelically expressed in the cell types of interest. While there is a report that 
a small percentage of neuroprogenitor cells express Mecp2 biallelically47, this event 
is exceedingly rare in postnatal mouse brain tissue and has not been observed in 
humans despite an in-depth genome-wide search for X-inactivation escape genes45.

After transcriptotypes are assigned, it should be noted that, while the wild-type 
and mutant cells have the same genetic background, there are also allele-specific 
X-chromosome SNPs expressed in cis with the mutant or wild-type gene. Thus, it 
is important to have multiple donors with the same mutation to confirm the gene 
expression differences observed are not secondary to differences in X-chromosome 
SNPs between mutant and wild-type cells. In our data, these X-chromosome SNPs 
did not contribute substantially to the gene expression changes observed between 
mutant and wild-type cells because the three individuals had similar patterns of 
gene misregulation despite having unique sets of X-chromosome SNPs.

Single-cell SNP sequencing in mosaic female brain tissue. To transcriptotype 
cells from mosaic female Mecp2+/– mutant mice, we first identified SNPs that 
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were consistently inherited with the mutant Mecp2 allele. Because this line has 
been inbred (backcrossed >​ 38 generations), sequencing offspring from previous 
litters was equivalent to sequencing the parents directly. For the same reason, 
however, we also expected that the only retained SNPs from the 129/OlaHsd 
strain in which the mutant Mecp2 allele was made would be closely linked to 
the Mecp2 locus itself. Indeed, variant calling (Freebayes using default settings, 
discussed further below) on scRNA-seq data from either Mecp2 WT or KO male 
hemizygous mice identified four SNPs within 2 MB of the Mecp2 locus that 
were confirmed by manually browsing the RNA sequencing tracks (Integrative 
Genomics Viewer, Broad Institute; see Supplementary Fig. 1). All male Mecp2-
knockout mice across two separate generations (WT1–3 and WT4–6 were from 
separate generations) contained the same SNPs, indicating that these SNPs can 
be used as a reliable marker of the mutant allele. Given the small number of SNPs 
that were identified, we attempted to maximize their detection by modifying the 
standard inDrops single-cell library preparation. Specifically, half of the amplified 
RNA was processed according to the published protocol using random hexamers 
and universal primers for PCR amplification, and the other half was reverse-
transcribed and then PCR-amplified with gene-specific primers for each allele-
specific SNP (see primer sequences below).

To identify the set of expressed SNPs that were unique to wild-type or mutant 
nuclei from postmortem human Rett syndrome brain donor samples, we first 
separated wild-type and mutant cells by FACS (described above) and performed 
deep total RNA-seq on the separate populations. Unlike the highly backcrossed 
Mecp2-mutant mice, there was a wealth of genomic variability that could be used 
to transcriptotype cells once the variants were confirmed to be expressed in cis 
selectively with the mutant or wild-type MECP2 allele. After performing RNA-seq 
on sorted wild-type (MECP2high) and mutant (MECP2low) populations of cells, 
we performed X-chromosome variant calling on these datasets using Freebayes 
version 1.1.0-448 with default parameters. The genomic locations of SNPs with a 
Freebayes score >​ 10 were used to extract reads (SAMtools version 1.2) from the 
mapped RNA-seq data of wild-type and mutant MECP2 populations. Based on the 
reference genome, each SNP sequence was assigned as the ‘reference’ sequence, the 
‘alternate’ sequence, or ‘other’. For both the sorted wild-type and mutant samples, 
the fractions of reference, alternate, or other reads that covered each SNP were 
calculated. If a gene was expressed from both alleles, approximately 50% of the 
reads sequenced would be expected to map to each allele. Because X-inactivation 
typically results in monoallelic expression, for a given cell, most of the sequencing 
reads (allowing for some sequencing error and/or sorting error) would be 
expected to map to a single allele. We thus considered the expression of a SNP to 
be allele-specific if ≥​ 85% of wild-type (MECP2high) reads and <​ 85% of the mutant 
(MECP2low) reads encompassing this region contained the same sequence variant 
(for example, reference or alternate). We used the MECP2high population as the 
primary filter for monoallelic SNP expression because the MECP2low population, 
while mainly defined by the low background immunofluorescence signal from 
MECP2-mutant cells (Sanger sequencing confirmed the cell population expressed 
the mutant allele), could also contain small numbers of wild-type cells that have 
background levels of fluorescence because they express low levels of MECP2 (for 
example, non-neuronal cells). The identification of allele-specific SNPs with these 
parameters was supported by the observation that for a given SNP, an average 
of 98% of the reads from wild-type cells (MECP2high) mapped to the same SNP 
(for example, reference) and an average of 76% of the reads from the mutant 
(MECP2low) cells mapped to the alternative SNP (for example, alternate). The 
allele-specific SNPs identified from each donor sample (Donor 1 =​ 69 SNPs, Donor 
2 =​ 69 SNPs, Donor 3 =​ 75 SNPs) were then used to mark the X chromosome alleles 
that were expressed in cis with either the wild-type or mutant allele of MECP2. 
Custom R scripts were written to process BAM output files from the inDrops 
mapping pipeline or total RNAseq mapping pipeline for the identification of allele-
specific SNPs.

Assignment of transcriptotype to individual cells. After the identification of the 
allele-specific SNPs that were expressed in cis with either the wild-type or mutant 
allele, we next used this information to assign transcriptotypes to the individually 
sequenced cells. To do this, we used SAMtools to identify the sequencing reads 
within the single-cell or single-nucleus RNA sequencing datasets that contained 
both the allele-specific SNPs identified above and a unique cell barcode. We 
then grouped the reads from each cell or nucleus and assigned the MECP2 
transcriptotype corresponding to the profile of allele-specific SNPs expressed. 
Specifically, a transcriptotype was assigned if ≥​ 85% of the reads covering an 
individual allele-specific SNP mapped to the same allele (for example, ≥​ 85% of 
the reads were reference) and ≥​ 80% of the total SNPs covered in each cell were 
concordant with the same transcriptotype (for example, ≥​ 80% of the SNPs covered 
in a cell were expressed in cis with the R255X allele of MECP2). Some cells or 
nuclei only had one or two reads mapping to an allele-specific SNP, which increases 
the chance of an incorrect transcriptotype call. After estimating that the mean error 
rate for transcriptotype assignments was only 0.5% in female Mecp2+/– mice and 
4.6% in human Rett donors, we chose to include these cells in the differential gene 
expression analysis to maximize the number of cells and resulting statistical power. 
The estimated transcriptotype error rate for a given cell with only one or two reads 
encompassing allele-specific SNPs was determined as the percent of genotype 

discordant reads in cells with at least three reads (defined as cells with confident 
transcriptotypes). The mean estimated transcriptotype error was then calculated 
by averaging the error rates for each cell in the dataset. The lower estimated error 
rate in mouse was accomplished by deeper sequencing of the allele-specific SNPs 
using gene-specific library preparations, an approach that can be used to further 
improve the confidence of transcriptotype calls in any dataset. Custom R scripts 
were written to process BAM output files from the inDrops mapping pipeline for 
assigning transcriptotypes to specific cells based on allele-specific SNPs.

Gene-specific primers for enriching SNP coverage in Mecp2+/– mouse single-cell 
libraries. Reverse transcription:

rs13468851: TGTATGTCGGACTTGATGTACT
rs13468852: TTTACAGTATTCTTTCTACATGGA
rs31144974: GATTAACTGTAACAACGATCACAAC
rs29035084: GGTTTCAAAGTACCCAGCATAAAT
PCR:
rs13468851: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNCT 

TGCTCTGTCAAGCTCTTTGC
rs13468852: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNN 

GATTACATCCGACACGTCTGC
rs31144974: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNN 

GCATGTTGGATTAGATTGTC
rs29035084: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNCA 

GCAGAGGTGGCTGAACTT

Differential gene expression analysis. We used Monocle 2 to identify genes 
differentially expressed between wild-type and mutant cells49. The single-cell and 
single-nucleus RNA-seq data were modeled by a negative binomial distribution, 
consistent with the expression profiles of our data. Differential expression analysis 
was conducted independently for each cell type by aggregating the gene counts 
from the population of cells or nuclei within a given cell type (median counts 
per gene in human excitatory neuron cluster =​ 2,029), which provided sufficient 
coverage of expressed genes for differential expression analysis between mutant 
and wild-type cells. Certain analyses, where described, required combining cells 
or nuclei of the same cell-type from multiple mice or human donor samples (for 
example, Fig. 3 because of limited inhibitory neuron populations). Otherwise, 
differential expression was performed between mutant and wild-type cells from 
each human donor sample individually (for example, excitatory neurons in 
Fig. 4). A gene was included for differential expression analysis if its minimum 
expression was ≥​ 0.1 and it was detected in at least 100 cells or nuclei. Significantly 
misregulated genes were identified by the FDR cutoff described for the specific 
analysis and number of cells studied. Differential expression analysis of randomly 
transcriptotyped cell populations resulted in few, if any, significantly misregulated 
genes. Thus, the uncorrected P values were ranked from smallest to largest and 
the number of genes selected for analysis was determined by the corresponding 
number of significantly misregulated genes identified in the respective mutant-
to-WT comparison. To generate randomly transcriptotyped groups of cells, 
the sample function in R was used to randomly select the same number of cells 
from each individual (without respect to transcriptotype) as was used for the 
SNP-seq-based transcriptotype analyses. Differential expression analysis was 
performed on two groups of randomly transcriptotyped cells (the same cell could 
not exist in both randomly generated lists). If analyses combined cells that were 
transcriptotyped from multiple individual donor samples (for example, Figs 2 
and 3), the corresponding number of cells was first randomly sampled on a per-
individual basis and then combined to form the control group. To ensure that the 
randomly sampled groups in each figure were representative of the entire dataset, 
differential expression was performed on three independent pairs of randomly 
sampled cells.

Correlations of MeCP2-dependent gene expression with DNA methylation, 
MeCP2 ChIP, and gene length. To generate the smooth-line correlation plots, 
genes were sorted by their gene length, DNA methylation, or MeCP2 ChIP signal, 
and a sliding window was defined by the indicated bins and step sizes for each 
analysis. The bins and step sizes were adjusted to the size of the gene list. The 
log2(fold-change) for each bin was averaged and plotted with the standard error for 
each bin. The gene length for a gene was obtained from RefSeq annotation (gene 
end–gene start). Cell-type-specific mouse DNA methylation data were obtained 
from ref. 26. Gene-body-level cell-type-specific human DNA methylation data were 
obtained from ref. 32 and averaged across all cells within the indicated cell type. 
Excitatory neuron-specific MeCP2 ChIP-seq data was generated as  
described below.

Gene ontology analysis and cell-type-specific enrichment analysis. Gene 
ontology analysis was performed at geneontology.org using the PANTHER 
overrepresentation test (Fisher’s exact test with FDR). All expressed genes 
(normalized expression >​ 0.1 in both mutant and wild-type cells of the 
corresponding cell type) for the respective comparison were used as the 
background lists. Gene ontology biological processes were reported with 
redundant/overlapping pathways only displayed once. Single-cell mRNA 
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sequencing data from >​ 160,000 cells and 39 distinct cell types were obtained from 
www.mousebrain.org50. For each gene, the normalized gene expression counts 
were averaged across all cells of the same cell type. The mean gene expression 
level within each cell type was then row-normalized using the Morpheus heatmap 
tool (https://software.broadinstitute.org/morpheus). Enrichment statistics were 
calculated by the following formula: the number of times per 1,000 iterations the 
mean expression of randomly sampled cells was greater than or equal to the cell 
type of interest/1,000 iterations.

INTACT nuclei isolation and MeCP2 ChIP-seq. CaMKIIa-Cre mice were 
crossed with mice that express the SUN1-sfGFP-MYC protein in the nuclear 
membrane in a Cre-dependent manner, and SUN1-GFP-expressing nuclei were 
isolated from the forebrain of 8-week-old male SUN1-GFP;CaMKIIa-Cre mice 
as previously described26. Nuclei were immunoprecipitated with a GFP antibody 
(Fisher G10362) and Protein G Dynabeads (Invitrogen). Nuclei were cross-
linked in 1% formaldehyde in PBS for 10 min at room temperature (20–23 °C), 
quenched with 125 mM glycine for 5 min, and washed twice with PBS. Nuclei 
were then resuspended in LB3 buffer (10 mM Tris, pH 8, 100 mM NaCl, 1 mM 
EDTA, 0.5 mM EGTA, 0.1% sodium-deoxycholate, 0.5% N-lauroylsarcosine, 
and protease inhibitors), and sonicated in a Diagenode Bioruptor. Insoluble 
material and beads were removed by spinning at 16,000 g for 10 min at 4 °C, and 
Triton X-100 was added to soluble chromatin at a final concentration of 1%. 
Chromatin was precleared for 2 h with Protein A Dynabeads, then incubated 
with Protein A Dynabeads conjugated to an MeCP2 antibody46 overnight at 
4 °C. Beads were washed twice with low-salt buffer (20 mM Tris, pH 8, 150 mM 
NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), twice with high-salt buffer 
(20 mM Tris, pH 8, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), 
twice with LiCl wash buffer (10 mM Tris, pH 8, 1 mM EDTA, 1% NP-40, 250 mM 
LiCl, 1% sodium deoxycholate), and once with TE buffer (50 mM Tris, pH 8, 
10 mM EDTA) at 4 °C. Chromatin was eluted off the beads by incubating in TE 
buffer with 1% SDS at 65 °C for 1 h, and cross-links were reversed by incubating 
overnight at 65 °C. Chromatin was treated with RNase A for 30 min at 37 °C and 
Proteinase K for 2 h at 55 °C. DNA was phenolchloroform-extracted and purified 
with the Qiagen PCR purification kit. Libraries were generated using the NuGEN 
Ovation Ultralow System V2 following the manufacturer’s instructions. Libraries 
were sequenced on an Illumina NextSeq 500 with 85-bp single-end reads. Reads 
were mapped to the mm10 genome with Bowtie2, and PCR duplicates were 
removed using SAMtools rmdup. Mapped reads from MeCP2 ChIP and input 
were randomly downsampled to the same number of reads. Bedtools map was 
used to count ChIP and input reads mapped to gene bodies for comparison to 
gene expression.

Reanalysis of published RNA sequencing data. Gene read-count tables for male 
6-week-old WT and R106W excitatory neuron nuclear RNA-seq and female 
18-week-old R106WWT and R106WMUT excitatory neuron nuclear RNA-seq 
were downloaded from GEO (GSE83474). Differential expression analysis was 

performed with the R package edgeR. FDR <​ 0.1 was used to identify differentially 
expressed genes. For comparison to DNA methylation, excitatory neuron mCA26 
was mapped to the gene body locations in the Johnson et al. counts tables using 
bedtools map.

Overlap with autism and intellectual disability genes. Rett syndrome gene lists 
were compared to the autism genes list at SFARI (https://gene.sfari.org/) and to the 
intellectual disability gene lists at the University of Colorado (http://gfuncpathdb.
ucdenver.edu/iddrc/iddrc/home.php). Enrichment statistics were calculated using 
the hypergeometric test in R 3.3.2.

Statistical analysis. Enrichment statistics of pairwise comparisons between 
two gene lists was calculated using the hypergeometric test as calculated in R 
3.3.2. Pearson correlations between gene expression and DNA methylation, 
gene length, or MeCP2 ChIP were compared by permutation. P values for these 
comparisons were estimated by calculating: (number of events where | corr1permutation 
– corr2permutation | >​ | corr1observed – corr2observed |)/1,000 permutations. Kruskal–Wallis 
tests and Mann–Whitney tests were performed using Prism v7. No statistical 
methods were used to predetermine sample sizes, but our samples sizes are similar 
to or larger than those reported in previous publications19,28.

Accession codes. Data has been deposited at GEO: GSE113673.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Custom R scripts can be made available upon reasonable 
request.

Data availability
All sequencing data reported in this study have been deposited in the NCBI Gene 
Expression Omnibus under accession GSE113673.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection SH800Z Cell Sorter Software version 2.1.3

Data analysis TopHat2 v2.1.0 was used to align total RNAseq reads. Freebayes version 1.1.0-4 was used to identify single nucleotide variants. Samtools 
1.2 was used to extract reads containing variants. Prism v7 was used for certain statistical analyses. Single-cell clustering was performed 
with Seurat and differential expression was performed with Monocle 2. Custom scripts were written in R version 3.3.3 to count the 
number of reads that contain allele-specific single nucleotide polymorphisms in the single-cell RNA sequencing data. These are available 
upon request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All sequencing data reported in this study have been deposited in the NCBI Gene Expression Omnibus under accession GSE113673

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample size but our samples sizes are similar or larger to those reported in previous 
publications.

Data exclusions Cells or nuclei with greater than 500 unique genes detected per cell were included for further consideration. Cells or nuclei with greater than 
15,000 unique molecular identifiers detected were omitted to minimize inclusion of data that represented the common barcoding of two or 
more cells.

Replication We observed the same findings within each rodent and human individual studied.

Randomization mice of the correct genotype, age, and sex were randomly selected for inclusion in the study. To generate randomly transcriptotyped groups 
of cells, the sample function in R version 3.2.2

Blinding Cell encapsulation was blinded. Analysis was conducted using automated scripts, but knowledge of sample IDs to write the code.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used MECP2 C-terminal antibody (made in-house); goat anti-rabbit 647 secondary antibody (Life Technologies) cat#A21244

Validation Chen, et al. Science 2003, Cohen et al. Neuron 2011. Signal is absent in MeCP2 KO tissue.
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mecp2tm1.1Bird/J mutant mice and their wild-type controls were obtained from Jackson labs (Stock No. 003890). Male mice 
were 8 weeks old, female mice were 12-20 weeks old.

Wild animals This study did not use wild animals

Field-collected samples This study did not use field-collected samples

Human research participants
Policy information about studies involving human research participants

Population characteristics Female Rett syndrome brain donors were 8-24 years old. All donors had the R255X mutation in MECP2. 

Recruitment Rett syndrome donor brain tissue was obtained from the NIH NeuroBioBank/Harvard Brain Bank in coordination with 
Rettsyndrome.org

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

GEO accession GSE113673

Files in database submission Raw Samples: CamkIIa_cortex_MeCP2_ChIP_rep1, CamkIIa_cortex_input_rep1, CamkIIa_cortex_MeCP2_ChIP_rep2, 
CamkIIa_cortex_input_rep2 
Processed: GSE113903_CamkIIa_mecp2_chip_counts.txt.gz

Genome browser session 
(e.g. UCSC)

N/A

Methodology

Replicates 2 biological replicates of MeCP2 ChIP and input from CamkIIa-positive nuclei from mouse cortex.

Sequencing depth MeCP2 ChIP rep 1: 59108980 total reads; 32580048 mapped, de-duplicated reads 
Input rep 1: 62068745 total reads; 44909766 mapped, de-duplicated reads 
MeCP2 ChIP rep 2: 55833090 total reads; 27752219 mapped, de-duplicated reads 
Input rep 2: 59495391 total reads; 40515255 mapped, de-duplicated reads 
Read length: 85bp single-end

Antibodies MeCP2 antibody from Chen WG et al. Science 2003

Peak calling parameters Read mapping: Used Bowtie2 (version 2.2.4) to map to mm10 genome using default parameters 
Peak calling: N/A; Mapped ChIP and input reads were counted in mm10 gene body locations using Bedtools map (version 
2.23.0)

Data quality N/A; did not call peaks; see MeCP2 gene body densities in processed counts tables.

Software Trimmomatic (version 0.33) was used to trim reads 
Bowtie2 (version 2.2.4) was used to map reads to mm10 genome 
Samtools (version 0.1.19) was used to remove duplicate reads 
UCSC-tools was used to extend reads to 250bp 
Bedtools (version 2.23.0) was used to count mapped ChIP and input reads in mm10 gene body locations
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Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation To stain nuclei for sorting, nuclei were incubated with a C-terminal MeCP2 antibody at 1:500 for 1 hour at 4°C, washed once with 
Wash buffer (PBS with 1% BSA and 0.16% IGEPAL), incubated with a goat anti-rabbit 647 secondary antibody (Life Technologies) 
at 1:500 for 30 min at 4°C, then washed once with Wash buffer. All washes were performed by centrifuging at 500g 5 min at 4°C. 
Nuclei were then resuspended in PBS with 1% BSA.

Instrument Sony SH800Z Cell Sorter

Software SH800 Software

Cell population abundance The MECP2_high population was 13.55% and MECP2_low population was 35.31%. We confirmed purity through Sanger 
sequencing and total RNA sequencing of these cell populations.

Gating strategy DAPI-positive singlets were gated on fluorescence intensity of MeCP2 staining to define high and low populations. A no primary 
antibody control was used to confirm specificity of staining.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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