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The precise regulation of gene expression is fundamental t o n eu ro de ve
lo pment, plasticity and cognitive function. Although several studies have 
profiled transcription in the developing human brain, there is a gap in 
understanding of accompanying translational regulation. In this study, 
we performed ribosome profiling on 73 human prenatal a           n d a    d  u   lt c  o r  tex 
samples. We characterized the translational regulation of annotated open 
reading frames (ORFs) and identified thousands of previously unknown 
translation events, including small ORFs that give rise to humanspecific 
and/or brainspecific microproteins, many of which we independently 
verified using proteomics. Ribosome profiling in stemcellderived human 
neuronal cultures corroborated these findings and revealed that several 
neuronal activityinduced noncoding RNAs encode previously undescribed 
microproteins. Physicochemical analysis of brain microproteins identified 
a class of proteins that contain arginineglycineglycine (RGG) repeats 
and, thus, may be regulators of RNA metabolism. This resource expands 
the known translational landscape of the human brain and illuminates 
previously unknown brainspecific protein products.

The human brain leverages extraordinary protein diversity to execute 
developmental programs, organize neural circuits and perform com
plex cognitive tasks1. Proteomic diversity is generated through a series 
of transcriptional, posttranscriptional and translational mechanisms 
that ultimately contribute to a rich and complex ‘translatome’. Although 
many studies have focused on transcriptional regulation in the devel
oping human brain, much less is known regarding the complexity of 
translational regulation in this context, underscoring the need to study 
this key regulatory node in human brain development.

Deep sequencing of ribosomeprotected mRNA fragments 
(ribosome profiling) provides a means to map genomewide trans
lation at nucleotide resolution2. From these data, the movement of 

ribosomes across codons can be determined and then used to identify 
proteincoding ORFs. Ribosome profiling in various cell types has 
revealed that the fraction of the transcriptome subject to translational 
regulation is far greater than previously recognized, with a single 
transcript often encoding many distinct protein products. Thus, RNA 
sequencing (RNAseq) analysis fails to give a complete picture of the 
landscape of proteins produced by a cell. Indeed, ribosomal profiling 
studies in yeast3, as well as cardiac tissues4 and tumor tissues5, have 
revealed the widespread active translation of previously unknown small 
ORFs (sORFs) encoding microproteins ≤100 amino acids (aa). From the 
relatively few microproteins to be functionally studied, researchers 
have identified important regulators of mitochondrial metabolism, 
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that are not known to be translated, such as XIST, HOTAIR and NEAT1, 
showed no evidence of active translation in the brain, further corrobo
rating the specificity of the identified ncRNAassociated ORFs. Taken 
together, these data map the translational landscape of the human 
cortex across development at an unprecedented level of resolution.

Transcription and translation during human brain 
development
Although transcriptional changes during the course of neurode
velopment have been extensively profiled15,16, the contribution of 
translational regulation during neurodevelopment has not been 
analyzed in depth. Adopting previous methods that used the num
ber of ribosomes per RNA molecule (ribosome density (RD)) as a 
measure of translational efficiency, we investigated the extent to 
which brain ORFs exhibit developmental shifts in translational effi
ciency17, focusing on canonical ORFs that encode proteins of known 
function. Comparison of our paired transcriptome and translatome 
datasets revealed several distinct modes of developmental regula
tion (Fig. 2a,b and Extended Data Fig. 2a–j): buffered (change in RD 
that counterbalances the change in RNA level); intensified (change 
in RD that amplifies the change in RNA level); mRNA transcription/
stability (change in the number of RNA molecules without a change 
in RD); or exclusively translationally regulated (a change in RD but no 
change in mRNA level). We found, for example, that developmental 
decreases in ribosomal gene RNA levels were effectively buffered 
by corresponding increases in translational efficiency (Fig. 2c and 
Extended Data Fig. 2d,e). This coordinated translational regulation 
likely reflects developmental changes in mTOR signaling, as these 
transcripts contain 5′ terminal oligopyrimidine tract (5′TOP) motifs18, 
sequences at the 5′ ends of mRNAs that link their translation to the 
mTOR nutrientsensing signaling pathway19. In contrast, ORFs encod
ing both major histocompatibility complex (MHC) components and 
proteins involved in complement activation display increases in both 
mRNA level and translational efficiency between the prenatal and 
adult brain (Fig. 2c and Extended Data Fig. 2d,e). Given the respective 
roles of these factors in developmental synapse formation and elimi
nation20,21, these findings implicate active translational regulation in 
the control of developmental synaptic pruning and circuit assembly.

sORFs and non-canonical translation in the human brain
Studies in other systems have shown that translational regulation is 
more widespread across the transcriptome than previously appreci
ated, often involving regions of the genome annotated as noncoding 
(for example, pseudogenes, lincRNAs, antisense RNAs and 5′ and 3′ 
untranslated regions (UTRs) of canonical proteincoding genes). To 
interrogate our datasets for novel human brain microproteins, we 
focused on Riboseqidentified ORFs ≤300 nucleotides (nt) (100 aa) 
in length that were either out of frame or did not overlap with longer 
ORFs. This analysis identified 38,187 actively translated sORFs orig
inating from 8,278 genes in the prenatal or adult brain (Fig. 3a and 
Extended Data Fig. 3a,b). Although many of these sORFs were trans
lated from alternative regions of canonical proteincoding transcripts, 
1,705 were derived from annotated noncoding transcripts, including 
reported lincRNAs, pseudogenes and antisense transcripts (Fig. 3b 
and Extended Data Fig. 3a). Notably, although the ribosome density of 
sORFs was, on average, ~10fold lower than the translation of canonical 
ORFs (Extended Data Fig. 3a), this low level of translation is similar to 
that of several previously reported microproteinencoding RNAs with 
wellcharacterized functions, including RPL41 (ref. 22), SLN23 and NBDY8, 
suggesting that newly described sORFs with relatively low translation 
compared to canonical ORFs are likely, at least in some cases, to encode 
functional microproteins. Like canonical ORFs, many of these sORFs 
were developmentally regulated via coordinated changes in RNA abun
dance and/or translational efficiency, which may enable the finetuning 
of sORF protein levels as the brain matures (Fig. 3c).

translational regulation and cell differentiation6–8. To date, however, 
the nature and roles of similar microprotein species in the developing 
human brain remain almost entirely uncharacterized.

Here we describe the generation of a comprehensive translational 
atlas of the human prenatal and adult cortex, from 73 distinct tissue 
samples. In addition to cataloguing annotated gene programs that are 
subject to dynamic regulation at the translational level, we identify a 
vast array of novel sORFs and other noncanonical translation events, 
including many arising from previously annotated noncoding RNAs 
(ncRNAs). Similar findings were also obtained from ribosome profiling 
of stemcellderived human neuronal cultures, where we identified sev
eral novel microproteins translated from neuronal activityresponsive 
RNAs previously annotated as noncoding. We found that most sORFs 
in the brain are newly evolved in humans, where a subset of the sORFs 
arose via transposable element insertion at start codons. Although 
their recent evolution might be thought to suggest that the micropro
teins translated from these sORFs are nonfunctional, more than 100 
of the humanspecific microproteins identified in our study have been 
previously shown to play a key role in the viability of a nonneuronal 
cell type9. Our study, thus, markedly expands the known translational 
landscape of the developing brain and provides a rich resource for the 
study of novel human brain sORFs. This dataset is accessible via our 
accompanying webbased searchable database (http://greenberg.hms.
harvard.edu/project/humanbrainorfdatabase/).

Results
Translational landscape of the human prenatal and adult brain
To characterize the human brain translational landscape at 
singlenucleotide resolution, we performed simultaneous RNAseq 
and ribosome profiling (Riboseq) from human adult dorsolateral pre
frontal cortex and prenatal cortex across a range of ages (Fig. 1a and 
Extended Data Fig. 1a). RNAseq provides a quantitative measure of the 
mRNA species expressed in the brain, whereas Riboseq allows for a 
quantitative appraisal of active mRNA translation. The gestational age 
of prenatal cortex samples (30 total) ranged from 12 weeks to 23 weeks, 
whereas adult brain donors (43 total) ranged in age from 18 years to 
82 years, with an average postmortem interval of 9.9 hours (Fig. 1b). 
Notably, across samples, Riboseq data exhibited the threenucleotide 
periodicity characteristic of actively translating ribosomes, a key metric 
for confident ORF identification (Fig. 1c). Moreover, Riboseq reads 
exhibited expected fragment size distributions (Extended Data Fig. 1b) 
and mapped primarily to annotated genecoding regions (Extended 
Data Fig. 1c), further supporting the idea that this method robustly 
captures RNA protected by actively translating ribosomes. Full demo
graphic and Riboseq quality metrics are available in Supplementary 
Table 1 and Extended Data Fig. 1a–j.

Highconfidence bona fide ORFs were identified based on the 
characteristic triplet reading frame periodicity of ribosome foot
prints using RibORF10. An ORF was considered high confidence if the 
sequences were present in two or more samples, exhibited clear start 
and stop codons and displayed Riboseq reads across the entire puta
tive ORF region. After combining data across samples and filtering for 
ORF quality, we identified a total of 172,187 distinct actively translated 
ORFs in the human brain, mapping to 13,305 distinct genes (Fig. 1d,e and 
Extended Data Fig. 1d). In support of the quality of the resulting annota
tions, the relative proportions of each ORF type in our dataset, as well 
as general features such as start codon usage, were broadly consistent 
with previous findings in cell lines11,12 and other tissues13 (Fig. 1e,f and 
Extended Data Fig. 1e). Specifically, noncanonical ORFs of all types are 
detected in these datasets and tend to use nonAUG start codons with 
higher frequency compared to canonical ORFs. ORFs translated from 
ncRNAs were most commonly identified within previously annotated 
long intergenic noncoding RNAs (lincRNAs) or pseudogenes (Fig. 1g), 
including the recently characterized ncRNAencoded microproteins 
NoBody8, MOXI7 and Cyren14. However, other highly expressed ncRNAs 
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Fig. 1 | Ribosome profiling captures active translation in the human adult 
and prenatal brain. a, Overview of experimental design. b, Histogram depiction 
of patient samples included in this study. c, Bar plot displaying Psites derived 
from offsetcorrected Riboseq reads in the first 100 nt of annotated ORFs (left) 
and the percentage of footprints in each reading frame (right). Data are shown 
as mean ± s.d.; n = 73 biologically independent tissues. d, Schematic overview 

of ORF types detected by RibORF. CDS, coding sequence. e, Number of ORFs of 
each type identified in human adult and/or prenatal brain. f, Stacked bar plot of 
start codon usage by ORF type. g, Stacked bar plot of numbers and percentages 
of translated ncRNAs separated by transcript biotype. dORF, downstream open 
reading frame; miscRNA, miscellaneous RNA; ouORF, overlapping upstream 
open reading frame; pcw, postconception weeks; y, years.
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While recognizing the difficulties associated with proteomic 
microprotein detection, we sought to independently corroborate our 
Riboseq findings at the protein level. Toward this end, we performed 
sizeselected mass spectrometrybased proteomics for enhanced 
detection of protein species less than 20 kDa24. To facilitate the iden
tification of proteins not annotated by UniProt, this analysis incorpo
rated a proteogenomic approach, whereby all peptides detected by 
mass spectrometry were matched to a custom database constructed 
from our Riboseq data. To further increase our ability to detect rare 
microproteins, we also reanalyzed published mass spectrometry data 
from 50 human adult brain tissue samples to search for signatures of 
sORFderived microproteins25.

Collectively, these analyses identified peptides corresponding 
to 4,104 unique ORFs (Fig. 3d and Extended Data Fig. 3d–g), including 
199 sORFs, 39 uORFs and four noncoding ORFs. To highlight one such 
example, this analysis confirmed the presence of a novel microprotein 
encoded by an upstream ORF (uORF) in GLUD1 (glutamate dehydroge
nase 1), a gene critically involved in glutamate metabolism (Fig. 3e)26,27. 
Notably, this GLUD1 uORF contains a translation initiator of short 5′ 
UTR (TISU) motif, which is known to enable uninterrupted translation 
under conditions of energy stress28, suggesting that this microprotein 
might contribute to neuronal responses to acute metabolic demands. 
A full list of proteomically detected sORF species is available in Sup
plementary Table 2. Given the sensitivity limitations of unbiased mass 

spectrometry, it is not surprising that the overall proportion of sORFs 
validated by proteomics in this context is relatively low. However, these 
proteogenomic datasets serve to validate the presence of a sizeable 
number of noncanonical ORFderived microproteins expressed in the 
brain at levels similar to functionally validated microproteins identi
fied in other tissues. In total, the identified microproteins represent a 
substantial expansion of the known brain translatome, with potential 
relevance for human development and disease.

Regulated sORF translation in human neurons
To complement these tissuebased studies, we also characterized the 
translational landscape in human embryonic stem cell (hESC)derived 
neuronal cultures. To this end, we employed an engineered hESC line 
harboring an integrated doxycyclineinducible NGN2 construct. 
We adapted a previously described protocol29 in which doxycycline 
induction of NGN2 was combined with SMAD and WNT inhibition to 
induce patterning toward a forebrain phenotype (Fig. 4a). The resulting 
cultures (hereafter, NGN2 neurons) have transcriptional signatures 
that are similar to those of welldifferentiated glutamatergic neurons 
(Extended Data Fig. 4a).

For these studies, we also exposed the differentiated NGN2 neu
rons to elevated levels of potassium chloride (KCl), a treatment that is 
known to induce acute, synchronous membrane depolarization and 
to promote activitydependent changes in RNA transcription in these 
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Fig. 2 | Transcriptional and translational regulation across human brain 
development. a, Classification of genes based on RNAseq, Riboseq and RD 
measurements. b, Scatter plot of fold changes between adult and prenatal brain 
for all canonical ORFs in Riboseq data and the corresponding gene in RNAseq 
data. Positive values indicate enrichment in the adult brain, whereas negative 
values indicate enrichment in the prenatal brain. Transcriptionally regulated 
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genes (light purple; change in RD that counterbalances the change in mRNA 
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the change in mRNA) are highlighted. c, Heat map of genes associated with the 
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neurons30. Thus, day 28 cultures from three independent differen
tiation cohorts were harvested for combined RNAseq and ribosome 
profiling with or without 6 hours of membrane depolarization with 
55 mM KCl. The resulting datasets passed key quality control metrics, 
with clear threenucleotide periodicity observed in the Riboseq data 
(Fig. 4h) and high data correlation between separate differentiation 
cohorts (Extended Data Fig. 4b,c). Moreover, robust induction of 
known activityresponsive loci was observed in all depolarized sam
ples (Extended Data Fig. 4d). Collectively, this analysis identified a total 
of 124,613 actively translated ORFs in NGN2 neurons (Fig. 4b,c), more 
than 60% of which (78,965/124,613) were also observed in the human 
brain tissue samples (Extended Data Fig. 4e,f). Principal component 
analysis (PCA) plots showed that NGN2 samples cluster more with the 
fetal rather than the adult translatome (Fig. 4d), as might be expected 
for hESCderived neurons.

In addition to being useful for the study of human neuronal 
activitydependent changes, these cultured human neurons are ame
nable to other manipulations such as translational inhibition with 
harringtonine, a smallmolecule drug that immobilizes ribosomes 
immediately after translation initiation and results in ribosome 

footprint accumulation at initiation sites11. The use of harringtonine 
is a key validation of Riboseq experiments not available in postmortem 
tissue. Therefore, we performed Riboseq on membranedepolarized 
NGN2 neurons treated with harringtonine or a vehicle control. We used 
RiboTISH to predict ORFs from harringtonine data, as this approach 
has recently been shown to be superior in identifying noncanonical 
and lowly expressed ORFs31. Compared to vehicletreated control 
neurons, we observed the expected accrual of ribosome footprints at 
translational initiation sites in harringtoninetreated samples (Fig. 4i 
and Extended Data Fig. 4h). We validated the start codons of 61,400 
ORFs, including 8,881 sORFs, 5,258 uORFs and 2,005 ORFs translated 
from ncRNAs (Fig. 4j, Extended Data Fig. 4i and Supplementary Table 
3). Canonical ORFs showed the highest concordance (74.4%) between 
the harringtonine experiments and the original dataset analyzed using 
RibORF. Notably, we also confirmed the start codons of noncanonical 
ORFs using harringtonine treatment, including 43.1% of uORFs and 
41.3% of noncoding ORFs. These ORFs represent the ‘highest confi
dence’ ORFs from the NGN2 dataset.

We next characterized the novel sORFs found to be translated 
from previously annotated ncRNAs. In this regard, we observed active 
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or by Johnson et al.25. e, Genomic locus of GLUD1. Tracks represent merged and 
depthnormalized reads across all adult versus prenatal samples for RNAseq, 
Riboseq as well as Psite positions. The sORF identified by RibORF is shown in 
gold, and the TISU sequence is indicated with an arrow. dORF, downstream open 
reading frame; miscRNA, miscellaneous RNA; ouORF, overlapping upstream 
open reading frame; QC, quality control.
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translation of novel sORFs in 128 of 706 activitydependent ncRNAs 
detected in NGN2 cultures (Fig. 4e and Extended Data Fig. 4j–m), many 
of which (101) were also detected by Riboseq in our human brain 
datasets. Notably, several of the predicted protein products from 
these ncRNAs were verified biochemically using sizeselected prot
eomics (Supplementary Table 2). Among these translated ncRNAs was 
LINC00473 (Fig. 4f,g), a previously characterized primatespecific and 
activitydependent lincRNA32 that has been implicated as a sexspecific 
driver of stress resilience when expressed ectopically in the mouse pre
frontal cortex33. Thus, LINC00473 and many other previously annotated 
neuronal activitydependent noncoding transcripts are translated to 
produce microproteins that may modulate key neuronal responses to 
activity. Together, these studies complement our analysis of human 
postmortem brain tissue and highlight the utility of NGN2 cultured 
neurons as a relatively homogeneous human neuronal population that 
is amenable to genetic and chemical manipulations.

Evolutionary conservation of sORFs
As a first step for prioritizing human brain sORFs for future study, we 
analyzed the evolutionary origins of brain sORFs using genomic phy
lostratigraphy—an approach that dates the origin of individual genes 
by examining the presence or absence of homologs across species34. 
Determination of the minimal evolutionary age for human brain sORFs 
revealed that, compared to most annotated proteincoding genes, 
most sORFs are humanspecific (67% of sORFs versus 12% of annotated 
proteincoding genes (Fig. 5a and Extended Data Fig. 5a)), consistent 
with the low levels of sORF sequence conservation observed in other tis
sues4,5,35. Our analysis further revealed that more recently evolved sORFs 
are shorter, contain fewer splice junctions and exhibit lower ribosome 
density compared to their more evolutionarily ancient counterparts 
(Fig. 5b–d). Microproteins encoded by the more evolutionarily ancient 
sORFs are also more likely to be detectable by proteomics, perhaps as a 
consequence of their higher overall levels of expression (Extended Data 
Fig. 5b). These features are consistent with the classic view that the more 
evolutionarily conserved regions of the genome are more likely to be 
translated5, thus nominating the highly conserved sORFs as promising 
candidates for future functional studies. However, the rapid evolution 
of humanspecific sORFs also suggests that these sequences may rep
resent evolutionary experiments. These regions may gain translation 
capacity in a given species that is not necessarily conserved during 
further evolution. To begin to test whether a subset of these newly 
evolved sORFs is functional, we overlapped sORFs that show evidence 
of translation in the human brain with a recently published dataset 
of CRISPR–Cas9 perturbation of sORFs in K562 or human induced 
pluripotent stem cells (iPSCs), selecting for those sORFs that show a 
significant growth phenotype when knocked out (Mann–Whitney Utest 
P < 0.05)9. Of the 124 sORFs that satisfy these criteria, a striking 101 are 

humanspecific (chisquared test P = 0.0004752), lending support to 
the hypothesis that these newly evolved microproteins have acquired 
important functions. It is also notable that, relative to all sORFs, those 
derived from brainenriched transcripts are significantly more likely 
to be specific to humans (Kolmogorov–Smirnov test, P < 2.2 × 10−16; 
Extended Data Fig. 5c), consistent with the idea that these protein 
products contribute to humanspecific aspects of brain development.

Recently, Playfoot and colleagues provided evidence for trans
posable element (TE) involvement in new ORF formation36. We 
directly explored this as a possible mechanism of sORF generation 
in the brain, finding that, compared to canonical proteincoding 
ORFs, ncRNAassociated sORFs have a significantly increased over
lap with TE insertions (10% versus 4%, respectively, P < 2.2 × 10−16 by 
twoproportion ztest; Fig. 5e and Extended Data Fig. 5d,e). This TE 
enrichment within ncRNAs has been previously noted and suggested to 
contribute new noncoding sequences for RNAmediated ncRNA func
tion37–39. Our findings, however, provide evidence that TEs might also 
play an important role in the generation of new proteincoding ORFs 
within these annotated noncoding regions. Notably, different classes 
of TEs were also found to be associated with distinct ORF types (Fig. 
5f); however, the functional importance of this observation requires 
further investigation.

uORF regulation of canonical protein translation
Of the actively translated sORFs identified from the human brain, 
8,239 (22%) were translated from brainenriched or brainspecific 
transcripts40, suggesting that, in many cases, their functions may be 
unique to the brain. To more directly investigate sORF function, we 
first focused on uORFs, a category of ORFs commonly thought to 
negatively regulate downstream translation of canonical ORFs through 
a variety of mechanisms41–43. Somewhat surprisingly, but consistent 
with more recent findings4,42,43,44, we found that uORF translation was 
not generally anticorrelated with translation of the corresponding 
canonical ORF (Fig. 6a–c and Extended Data Fig. 6a–c). Notwith
standing this general finding, we still identified several individual 
uORFs that were strongly anticorrelated with translation of their 
canonical downstream ORFs. One such example involved a uORF in 
DLGAP1, which encodes an important brainenriched postsynaptic 
scaffolding protein45 (Fig. 6d–f). In this case, translation of the DLGAP1 
uORF was strongly enriched in prenatal samples through the prefer
ential use of an alternative transcriptional start site (TSS) (Fig. 6d,e 
and Extended Data Fig. 6d) and was associated with a reduction in 
translation of the canonical DLGAP1 protein (Fig. 3f). Together, these 
data point toward a mechanism in which the use of an alternative TSS 
in the prenatal, but not the mature, brain leads to specific transla
tional repression of the canonical DLGAP1 protein. Notably, DLGAP1 
is a known autismassociated gene46, raising the possibility that this 

Fig. 4 | Activity-dependent translation in hESC-derived neurons. a, 
Schematic of Riboseq and RNAseq from NGN2 neurons after 6hour membrane 
depolarization. b, Breakdown of translated ORFs of each type identified in NGN2 
neurons. c, Stacked bar plot of numbers and percentages of translated ncRNAs 
separated by transcript biotype. d, PCA analysis based on RNAseq and Riboseq 
reads mapping to annotated genes in primary adult and prenatal brain tissue 
and NGN2 neurons. e, Volcano plot of −log10(Padj) versus log2(fold change) in 
RNAseq expression between membranedepolarized and unstimulated NGN2 
neurons. Black indicates DEseq2 Padj < 0.05; purple indicates activitydependent 
ncRNAs with no evidence of translation in human brain or NGN2 neurons; and red 
indicates activitydependent ncRNAs with evidence of translation in human brain 
and/or NGN2 neurons. f, Genomic locus of LINC00473 in NGN2 neurons. Tracks 
represent merged and depthnormalized reads across three biological replicates 
of membranedepolarized (6hour KCl) and unstimulated neurons for RNA
seq, Riboseq as well as Psite positions for Riboseq and harringtoninetreated 
Riboseq. The sORF identified by RibORF is shown in gold. g, Highresolution 
depiction of genomic locus of the ORF encoded by LINC00473 in NGN2 neurons. 

Tracks represent merged and depthnormalized reads across three biological 
replicates of membranedepolarized (6hour KCl) and unstimulated neurons 
for RNAseq, Riboseq as well as Psite positions for Riboseq and harringtonine
treated Riboseq. The sORF identified by RibORF is shown in gold. h, Bar plot 
displaying Psites derived from offsetcorrected Riboseq reads from NGN2 
neurons treated with vehicle control. The first 50 nt (left) and the last 50 nt (right) 
of annotated ORFs are shown. Data are shown as mean ± s.d.; n = 6 independent 
cell differentiations examined over two independent experiments. i, Bar plot 
displaying Psites derived from offsetcorrected Riboseq reads from NGN2 
neurons treated with harringtonine. The first 50 nt (left) and the last 50 nt (right) 
of annotated ORFs are shown. Data are shown as mean ± s.d.; n = 3 independent 
cell differentiations. j, Number of ORFs of each type identified in NGN2 neurons 
treated with harringtonine. Absolute number (n) and percentage of overlap with 
ORFs identified from NGN2 neurons treated with cycloheximide alone are noted 
in parentheses. dORF, downstream open reading frame; h, hours; miscRNA, 
miscellaneous RNA; ouORF, overlapping upstream open reading frame; PC, 
principal component.
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developmentally timed regulation of DLGAP1 translation may be 
required for proper neurological function. Our overall findings are, 
thus, consistent with a nuanced role for brain uORFs in translational 
regulation, with select uORFs exerting a strong negative regulatory 
influence on developmentally timed protein expression.

Physicochemical analysis of brain microprotein function
We also sought to gain further insight into brain microprotein function 
through additional primary sequence analysis. In this regard, 6,491 
(17%) human brain sORFs showed significant sequence similarity 
(E < 10−4) to known proteins, with 441 (~1%) matching a protein sequence 
encoded elsewhere in the genome. These previously characterized 
protein paralogs participate in a variety of processes, including cel
lular metabolism, transcription, translation and membrane transport 
(Extended Data Fig. 7a and Supplementary Table 4), raising the pos
sibility that the newly identified sORFs encode microproteins with 
biological functions that are similar to the proteins translated from the 
corresponding canonical ORF. Indeed, we found that 31% of the sORFs 
with significant sequence similarity to known or predicted human 
proteins overlapped with an annotated protein domain, strongly sug
gesting that many of these sORFs encode defined folded structures or 
even entire structural domains (Extended Data Fig. 7b).

For sORFs lacking sequence similarity to known or predicted 
human proteins (69%), calculated FoldIndex scores, a rough predictive 
measure of intrinsic disorder47, suggest that these protein products 

do not generally adopt stable threedimensional conformations (Fig. 
7a), consistent with other sequencebased characteristics (Fig. 7b and 
Extended Data Fig. 7c–f). However, many disordered proteins have 
recently been shown to serve essential cellular functions through a 
variety of mechanisms, including the tuning of protein interaction 
specificity and affinity, as well as through the formation of biomolecu
lar condensates48–50.

To explore further the potential function of human brain micro
proteins, we proceeded to compare human brain sORFs with similarly 
sized disordered regions from known proteins on the basis of their 
physicochemical and bulk sequence properties using hierarchical 
clustering51 (Fig. 7c, Extended Data Fig. 7g and Supplementary Table 
5). Strikingly, this analysis identified a strong enrichment of brain 
sORFs (>5× expected, 712 total) in the resulting sequence clusters that 
were rich in RGG motifs and/or aromatic residues as well as, to a lesser 
extent, clusters rich in arginine residues (2.8× expected). Likewise, 
human brain sORFs were strongly overrepresented (>5× expected) in an 
aromatic amino acidrich polypeptide cluster. By contrast, clusters of 
acidic, lysinerich and polar sequences encompassing known intrinsi
cally disordered proteins were strongly depleted for sORFs, indicating 
that brain sORFs display restricted sequence features, consistent with 
possible biological functions. Indeed, we found that 11 of the human 
brain microproteins that are predicted to be intrinsically disordered 
are important for cell survival9, further supporting a functional role 
for these microproteins in the brain.
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It is notable that RG and RGG motifs are important for the regula
tion of mRNA splicing and translation and have also been associated 
with RNA binding and the formation of biomolecular condensates52. 
Indeed, several previously characterized proteins in RGGrich and 
Rrich clusters are known to interact with RNA in biomolecular conden
sates and have been implicated in splicing and mRNA binding, raising 
the possibility that the newly identified sORFencoded microproteins 
may also interact with RNA processing complexes to control mRNA 
splicing, translation or DNA damage responses in the nucleus.

In vitro validation of candidate human brain microproteins
To independently verify the translation potential and subcellular locali
zation of the newly identified sORFs, we overexpressed six selected 
sORFs with their endogenous 5′ UTR and a FLAGHA epitope tag in het
erologous cells (Supplementary Table 6). These sORFs were all derived 
from annotated noncoding regions and included both evolutionarily 
ancient and humanspecific sORFs. We confirmed expression of micro
proteins of expected molecular weight and found that subsequent start 
codon mutations prevented translation of these microproteins (Fig. 
7d), providing further evidence that these sORFs can be efficiently 
translated to yield stable protein species. Moreover, the translated 
microproteins exhibited a range of subcellular localization patterns 
(Fig. 7e), suggesting that expression in heterologous cells provides a 

useful platform for interrogating the biochemistry and cell biology of 
these newly identified human brain microproteins.

Discussion
RNA translation is a fundamental cellular process that is tightly regu
lated across human development. The fidelity of translation, as well 
as the stability and localization of RNA transcripts, are critical deter
minants of brain function, with mRNA translation regulation being a 
key step that can be misregulated in human neurodevelopment and 
neuropsychiatric disease53–56. Importantly, studies in other human 
tissues such as the heart suggest that the translatome is far more com
plex than previously appreciated4,5 and that the resulting proteome 
diversity likely contributes to a myriad of functions in these tissues. 
Remarkably, however, the human brain translatome has remained 
largely uncharacterized.

In this study, we applied ribosome profiling and proteomics to the 
prenatal and adult human cortex, as well as to hESCderived neuronal 
cultures, providing the first largescale resource of translation events 
in the developing human brain and demonstrating that translation 
is an important mode of regulation for shaping the brain proteome. 
Collectively, our data reveal widespread translation of noncanonical 
ORFs in the human brain, including thousands of novel micropro
teins. We identified in the brain a subset of ncRNAs, uORFs and other 
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annotated noncoding transcripts that encode translated proteins, 
some of which were directly confirmed by mass spectrometry. We 
identified translational control as a widespread mode of canonical 
gene regulation across development while also acknowledging that 
effects of nontranslational variables, such as protein stability and 
posttranslational modifications, can influence resulting protein levels. 
Furthermore, the developmentally regulated changes in RD that we 

identified could be due to changes in translational initiation or elonga
tion, and future experiments will be required to disentangle these key 
modes of regulation. Further investigation of these pervasive forms of 
translational regulation promises new insights into the gene expression 
mechanisms that control various aspects of human neurodevelopment.

In addition to studying the developmental regulation of RNA 
translation in human brain tissue, we profiled the activitydependent 

ca

b

15

16

21

60

34

58

88

50

66

87

78

% sORFs

Fold
enrichment

5.8

5.4

2.8

8.5

Known protein functions

mRNA binding (q<10–5)

Membrane (q<10–10)

Glycosylation (q<10–10)

P-containing repeats (T/P, K/A/P)

G-containing repeats 
(GG, SG, FG, PG, RGG)

R, charge (RR, SR, PR, isoelectric point, 
basic, R/K-ratio)

K, acidic residues, repeats

N/Q/S/T

Sequence and physicochemical features

N
or

m
al

iz
ed

fe
at

ur
e 

va
lu

e

–0.01000
–0.00667
–0.00333
0.00000
0.00333
0.00667
0.01000

K-rich

Histone H1

Acidic

N-rich

Q-rich

S-rich

P-rich

G-rich

(FR)G

RGG

R-rich

Aliphatic, 
hydrophobic

Aromatic

T-rich

Keratin

FG repeat

RG repeats 92

mRNA processing (q<0.05)

Translation (q<0.05)

Peptide receptors (q<1)

Aromatic, hydrophobic residues

100

U
ni

P
ro

t

sORFs (no BlastP hit)

Wild-type sORF
Start codon

mutant sORF

x
Consists of

5′ UTR-sORFmut-Flag-HA
Consists of

5′ UTR-sORF-Flag-HA

Transfect into
HEK293T cells

100

10–1

10–2

10–3

10–4

10–3 10–2 10–110–4
–3

0

3

6

9

–3 0 3 6 9

U
ni

P
ro

t

sORFs (no BlastP hit)

RGGs (per residue)
R/K ratio

(log)

Isoelectric
point

e

M
er

ge

SLN LO
C60

67
24

NBEAL1

LN
C-F

ANCM
-8

LN
C-K

HDRBS2-
14

5′
 U

T
R

-s
O

R
F

-
F

LA
G

-H
A

N
uc

le
i

LI
NC00

47
3

d

WT ∆ATG

LINC00473

20
15

10

5

2

kDa – WT ∆ATG

LOC606724

–

GADPH

HA

0.05

0.10

0.15

0.20

0.25

0.30

–1 –0.75 –0.5 –0.25 0 0.25 0.5 0.75 1

Known protein, UniProt

Known protein with IDR

sORF, paralog

sORF, no paralog

0

FoldIndex score

P
ro

po
rt

io
n

Disordered Ordered

37 37

20
15

10

5

2

kDa

GADPH 5 µm

HA

DAPI

α-FLAG

5 µm 5 µm 5 µm 5 µm 5 µm

Fig. 7 | Microprotein functional characterization. a, FoldIndex score 
distribution of proteins annotated in UniProt (black), annotated proteins 
with IDRs (gray) and sORFs with and without a BlastP hit (red and blue, 
respectively). b, Scatter plot of average enrichment per residue of sequence and 
physicochemical properties in sORFs with no BlastP homology versus annotated 
proteins (UniProt). RGG repeats were the most highly enriched of the tested 
sequence and physicochemical properties in sORFs. c, Heat map and hierarchical 
clustering of zscores for physicochemical parameters associated with the 
known disordered proteome (IDRs 21–100 aa in length) as well as sORFs with 
predicted IDRs that do not have a paralog and do not overlap annotated coding 
ORFs. For the purposes of this analysis, sORFs that overlapped with an annotated 

ccds ORF (for example, internal, external and readthrough) were excluded from 
this analysis. Boxes to the right of the heat map indicate clusters of IDRs with 
similar properties. Blue indicates clusters depleted for sORFs; yellow indicates 
clusters significantly enriched for sORFs. d, Western blot of FLAGHAtagged 
unmodified and ATGmutated LINC00473 and LOC606724 lincRNAs, which 
includes the endogenous 5′ UTR of each transcript. Experiment was repeated 
twice with similar results. Unprocessed blots are provided in the source data. 
e, Immunofluorescence of FLAGHAtagged sORFs (SLN, LNC-FANCM-8, LNC-
KHDRBS2-14, LINC00473, NBEAL1 and LOC606724) containing the endogenous 
5′ UTR expressed in HEK293T cells. Experiment was repeated twice with similar 
results. WT, wildtype.
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translatome in hESCderived neuronal cultures and found that many 
activitydependent lincRNAs that were thought to be noncoding 
are actually translated in this context. What is unclear for individual 
‘noncoding’ transcripts is whether they function in the brain solely 
as proteincoding RNAs or whether the RNA and the encoded protein 
possess independent functions. Recent studies using expression quan
titative trait locus analysis suggest that hundreds of lincRNAs have 
associations with human diseases and that rare variants in lincRNAs 
impact complex human traits57. These findings underscore the impor
tance of discerning the proteincoding potential of brainexpressed 
lincRNAs in future studies.

The identification of sORFs is a necessary and critical first step in 
understanding their role in the human brain, and much work remains 
to understand the function of individual human brain sORFs. Our 
analysis of microprotein amino acid sequence identified a marked 
absence of structured domains and likely enrichment for proteins with 
RNAbinding functions. Given these findings, it is tempting to speculate 
that these disordered microproteins may impact RNA metabolism by 
enhancing or inhibiting the formation of biomolecular condensates. 
Moreover, the fact that most sORFs are humanspecific renders them 
interesting candidates in the study of uniquely human features of the 
brain. Although these findings may suggest that some newly evolved 
microproteins are nonfunctional, we isolated many humanspecific 
microproteins that appear to play a key role in cell growth and viability9. 
It will be of great interest in the future to understand how sORFs may 
expand and become fixed in the genome through continued evolution.

It is important to consider several caveats of the current study. 
First, although we were able to use existing singlecell RNAseq data 
from human adult brain tissue to estimate the distribution of cell types 
in our adult and prenatal brain tissue samples, our ribosome profiling 
was restricted to bulk tissue measurements. In addition, ribosome 
profiling was largely performed from postmortem brain tissue, and 
postmortem intervaldependent decreases in translation initiation 
and/or ribosome/RNA binding likely contributed to some loss of ORF 
resolution that may result in an overestimation of truncated ORF anno
tations. However, due to our stringent filtering, our findings in the 
present study likely represent an overall underestimate of translated 
ORFs. Although we carefully curated our final list of ORFs, all ORF iden
tification is limited by the sliding scale of confidence in computational 
ORFcalling algorithms, and only a small fraction of predicted ORFs 
were subsequently validated through biochemistry. Similarly, alterna
tive splicing events can masquerade as alternate translation events, 
which could lead to falsepositive identification of novel ORFs. Despite 
these limitations, our finding that the translatome of hESCderived 
neurons largely mimics translation in prenatal cortex tissue suggests 
that our measurements in postmortem tissue predominantly reflect 
physiologically relevant translation events.

In conclusion, our study provides, to our knowledge, the first 
largescale resource for the investigation of translation regulation in 
the human brain. Notably, our results identify previously unannotated 
microproteins as candidates for future functional characterization, 
opening new opportunities for the investigation of translational regu
lation in the nervous system and for the elucidation of the function of 
many new humanspecific and brainspecific microproteins.

Online content
Any methods, additional references, Nature Research reporting sum
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41593022011649.
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Methods
Human brain samples
All human tissue research was approved by the Harvard Medical School 
institutional review board (IRB). Deidentified adult brain tissue sam
ples were obtained from the National Institute of Health (NIH) Neuro
BioBank. NIH NeuroBioBank sample collection has been approved by 
the following IRBs: University of Miami IRB, University of Maryland 
IRB, Maryland Department of Health and Mental Hygiene IRB, Partners 
Human Research Committee, Department of Veterans Affairs–Los 
Angeles, Bronx VA Medical Center IRB and University of Pittsburgh 
IRB. Adult brain samples with a postmortem interval of <15 hours were 
included in the final cohort. Prenatal brain samples were obtained from 
the Human Developmental Biology Resource (HDBR) and the Univer
sity of California, San Francisco (UCSF) Pediatric Neuropathology 
Laboratory. Deidentified tissue samples were collected with previous 
patient consent in strict observance of the legal and institutional ethi
cal regulations. All cases were determined by chromosomal analysis, 
physical examination and/or pathological analysis to be control tis
sues, which indicates that they were absent of neurological disease. 
Cases with any abnormalities in these parameters were not used for 
this study. Patients were consented specifically for research purposes 
and were not compensated for their tissue donation. Tissue collection 
protocols were approved by the Human Gamete, Embryo and Stem Cell 
Research Committee (IRB) at UCSF and the Newcastle & North Tyneside 
1 Research Ethics Committee (for HDBR).

Ribosome profiling of human brain tissue
Ribosome profiling was performed using a protocol modified from 
McGlincy et al.58. Frozen brain tissue (~80 mg) was thawed on ice. Each 
sample was dounced 15× in 400 µl of icecold lysis buffer: 20 mM Tris pH 
7.4, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT and 100 µg ml−1 of cyclohex
imide (SigmaAldrich). The lysate was further sheared using a 26gauge 
syringe. The lysate was clarified by centrifugation at 20,000g for 
10 minutes at 4 °C. Supernatant (10 µl) was removed, added to 300 µl 
of TRIzol and frozen at −80 °C for future RNAseq library preparation. 
RNA concentration in the remaining supernatant was quantified using 
RNA Qubit. Lysate (30 µg) was subjected to RNase I digestion (0.5 U 
of RNaseI per µg of RNA) at room temperature for 45 minutes with 
gentle agitation.

After RNase digestion, 10 µl of Superasin (Thermo Fisher Scien
tific) was added to each sample, and the samples were transferred 
to ice. To isolate ribosome protected fragments, the RNasedigested 
lysate was transferred to UltraClear 11 × 34 mm centrifuge tubes (Beck
man Coulter) and underlaid with 0.9 ml of sucrose cushion. Samples 
were centrifuged in a TLS55 rotor at 51,000 r.p.m. for 2 hours at 4 °C. 
The supernatant was discarded, and the pellet was resuspended in 
300 µl of TRIzol. Ribosomeprotected fragments were purified from 
TRIzol using the Zymo Directzol kit. RNA was precipitated by adding 
38.5 µl of RNasefree water, 1.5 µl of GlycoBlue, 10 µl of 3 M sodium 
acetate pH 5.5 and 150 µl of isopropanol to 100 µl of eluted RNA. The 
mixture was incubated overnight at −20 °C. Samples were centrifuged 
for 30 minutes at 20,000g at 4 °C. The supernatant was discarded, and 
the RNA pellet was resuspended in 5 µl of 10 mM Tris pH 8. Next, 5 µl 
of 2× denaturing sample loading buffer (980 µl of formamide, 20 µl of 
500 mM EDTA and 300 µg of bromophenol blue) was added to each 
sample, and then the sample was denatured at 80 °C for 90 seconds. 
Ribosomeprotected fragments, along with control oligos58, were run 
on a 15% polyacrylamide gel at 200 V with 12 µl of NEB miRNA marker. 
The gel was stained with SYBR Gold in 1× TBE. Gel fragments between 
17 nt and 34 nt were excised and placed in a microfuge tube with 400 µl 
of gel extraction buffer. Samples were frozen on dry ice for 30 minutes 
and then thawed overnight with gentle agitation.

After overnight gel extraction, 400 µl of eluate was transferred 
to a new microfuge tube. The RNA was precipitated by adding 1.5 µl 
of GlycoBlue and 500 µl of isopropanol. After overnight incubation 

at −20 °C, the sample was centrifuged at 20,000g for 30 minutes at 
4 °C. The supernatant was discarded, and precipitated RNA was resus
pended in 4 µl of 10 mM Tris pH 8. Samples were then dephosphoryl
ated using T4 PNK (4 µl of RNA in 10 mM Tris pH 8, 0.5 µl of T4 PNK 
enzyme, 0.5 µl of T4 PNK buffer and 0.5 µl of Superasin) at 37 °C for 
1 hour. Samples were then subjected to SPRI cleanup: 50 µl of sample 
in RNasefree water was added to 90 µl of RNAclean beads and 270 µl of 
isopropanol. After washing with 85% ethanol, beads were resuspended 
in 7 µl of RNasefree water. The supernatant was collected, and we 
proceeded with nextgeneration sequencing library preparation using 
the Clontech smRNA library prep kit according to the manufacturer’s 
instructions. Libraries were sequenced on an Illumina NovaSeq S2 
with singleend 1× 50nt reads. Samples were always processed in large 
batches of a maximum of 24 samples.

Human neuron differentiation
The use of hESCs was approved by the Harvard Medical School Embry
onic Stem Cell Research Oversight Committee. The transgenic H9 NGN2 
hESC line was a generous gift from Alban Ordureau and J. Wade Harper. 
H9 NGN2 was generated by stably inserting a doxyclineinducible 
NGN2 cassette into the AAVS1 locus of H9 cells (WA09, WiCell)59. We 
collected human neurons from three independent differentiation 
cohorts, and each replicate exhibited characteristic gene expression 
patterns reported previously (Extended Data Fig. 4a)29. H9 NGN2 cells 
were cultured in mTeSR Plus media (STEMCELL Technologies) on 
tissue culture plates coated with hESCqualified Matrigel (Corning). 
They were passaged using Dispase (1 mg ml−1, Life Technologies) until 
ready for differentiation. A published protocol that combines devel
opmental patterning and NGN2 induction was adapted to differentiate 
H9 NGN2 into neurons29. At day 0, cells were treated with Accutase 
(StemPro Accutase, Life Technologies) and plated in single cells at 
50,000 cells per cm2 in mTeSR Plus media supplemented with 10 µM 
Y27632 (STEMCELL Technologies) on tissue culture plates coated with 
336.67 µg ml−1 of Growth Factor Reduced Matrigel (Corning). On day 1, 
the medium was replaced with KSR media (Knockout DMEM medium, 
15% knockout serum replacement (KOSR), 2 mM Lglutamine, 1× MEM 
nonessential amino acids (MEM NEAA), 1× penicillin–streptomycin 
(pen/strep) and 1× 2mercaptoethanol (all Gibco)) supplemented with 
100 nM LDN193189, 2 µM XAV939 (STEMCELL Technologies), 10 µM 
SB431542 hydrate and 2 µg ml−1 of doxycycline hyclate (SigmaAldrich). 
Day 2 media was 50% KSR media/50% NIM media supplemented with 
LDN/XAV/SB and 2 µg ml−1 of doxycycline. NIM media consisted of 
DMEM/F12 medium, 1× GlutaMAX, 1× MEM NEAA, 1× pen/strep, 0.16% 
Dglucose (SigmaAldrich) and 1× N2 supplementB (STEMCELL Tech
nologies). Day 3 media was NIM media supplemented with 2 µg ml−1 of 
doxycycline. At day 4, cells were treated with Accutase and plated in 
single cells at 40,000 cells per cm2 in NB media (Neurobasal medium 
(without glutamine), 1× GlutaMAX, 1× MEM NEAA, 1× pen/strep and 
1× N2 supplementB) supplemented with 1× B27 without vitamin A, 
2–2.4 µg ml−1 of mouse laminin (Gibco), 1 µM ascorbic acid, 2 µM dibu
tyryl cyclicAMP (SigmaAldrich), 20 ng ml−1 of brainderived neuro
trophic factor, 10 ng ml−1 of glialderived neurotrophic factor (rhBDNF 
and rhGDNF, PeproTech), 10 µM Y27632 and 2 µg ml−1 of doxycycline 
on the tissue culture plates coated with 336.67 µg ml−1 of Growth Factor 
Reduced Matrigel. The media at day 4 without Y27632 and doxycycline 
is referred to as complete NB (cNB) media. On day 5, the media was 
replaced with cNB media. Thereafter, half of the media was replaced 
weekly with cNB2x, where concentrations of all the supplements to 
the NB media (except Y27632) were doubled. In between each media 
change, media was directly supplemented with 2 µg ml−1 of doxycycline 
on the third day of the week (days 8, 15 and 22). Cells were silenced on 
day 27 with TTX (Abcam) and APV (Tocris), which antagonize sodium 
channels and NMDA receptors, respectively. Cells were collected at 
day 28 in 1× PBS supplemented with 1× cycloheximide after being 
stimulated with 55 mM KCl for 0 hours or 6 hours.
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Ribosome profiling of human neurons
Ribosome profiling of human NGN2induced neurons was performed 
as described above for human brain tissue, except that RNase I diges
tion time was 15 minutes. For harringtonine treatment, 2 µg ml−1 of 
harringtonine or an equal volume of DMSO was added to cell culture 
media and incubated at 37 °C for 2 minutes before proceeding with 
Riboseq cell lysis and sample preparation as described above.

RNA-seq library preparation
RNAseq libraries were prepared from 10 ng of total RNA using the 
SMARTer Stranded Total RNAseq Pico Input Mammalian V2 kit (Takara 
Bio) according to the manufacturer’s instructions. Samples were multi
plexed with Illumina TruSeq HT barcodes and sequenced on a NextSeq 
2000 with singleend 1 × 75nt reads. Samples were always processed 
in large batches of a maximum of 24 samples to minimize sample pro
cessing biases.

Analysis of RNA-seq data
In an effort to capture the most complete picture of translation, includ
ing the potential translation of brainspecific ncRNAs, RNAseq and 
Riboseq reads were mapped to the lncRNA knowledge base (lncR
NAKB) annotation60. This annotation includes experimental evidence 
of ncRNA expression across 31 solid human normal tissues, including 
the brain, providing a comprehensive resource of transcripts and 
transcript isoforms in the human brain. Sequencing reads were aligned 
using Hisat2 (version 2.1.0) to the Homo sapiens genome (GRCh30) and 
transcriptome (lncRNAKB). Alignments and analysis were performed 
on the Orchestra2 high performance computing cluster through Har
vard Medical School. Aligned BAM files were sorted using Picard Tools 
(version 2.8.0) and filtered for reads that uniquely aligned to remove 
multimapped reads using samtools (version 1.9); stranded bedGraphs 
were generated using STAR; and reads were quantified over annotated 
exons using HTSeqcount (version 0.9.1).

ORF calling and filtering with RibORF
Sequencing adapters were removed using Cutadapt (version 1.14); 
trimmed FASTQ files were aligned to hg38 ribosomal RNA sequences 
using Bowtie2 (version 2.3.4.3); and unaligned reads were mapped to 
the hg38 genome and lncRNAKB transcriptome60 using STAR (version 
2.7.3a) with standard settings and the following modified parameters: 
–clip5pNbases 3, –seedSearchStartLmax 15, –outSJfilterOverhang
Min 30 8 8 8, –outFilterScoreMin 0, outFilterScoreMinOverLread 
0.66, outFilterMatchNmin 0, outFilterMatchNminOverLread 0.66, 
–outSAMtype BAM Unsorted. Aligned BAM files were filtered for only 
uniquely mapped reads and sorted using Picard Tools (version 2.8.0), 
and stranded bedGraphs were generated using STAR. The RibORF 
pipeline was run on each sample individually using standard param
eters. Due to template switching during library preparation, reads 
contained three untemplated bases at the 3′ end that were not included 
in the alignment but added to the length of each read. Therefore, reads 
30–33 nt in length (corresponding to RNA fragments 27–30 nt) were 
analyzed for threenucleotide periodicity within known proteincoding 
ORFs (RefSeq). For each sample, we selected only the read lengths for 
which at least 50% of the reads matched the primary ORF of known 
proteincoding genes in a metagene analysis. Samples with fewer 
than two read lengths passing filtering were removed from further 
analysis. Read lengths were offsetcorrected, and RibORF was used to 
predict ORFs with a minimum length of 8 aa and translation probability 
>0.7. Only samples in which frame 0 periodicity was >50% for at least 
two read lengths and an overall area under the curve (AUC) >0.9 were 
included in the final analysis.

After running the RibORF pipeline on each brain sample individu
ally, information from RibORF output files was used to generate GTF 
and BED files for all ORFs identified in each sample. ORFs with lengths 
of 0 and ORFs annotated as noncoding despite being detected in 

proteincoding genes were eliminated. Using bedtools version 2.27.1 
and the GRCh38 primary assembly human genome file, DNA sequences 
were associated with each exon of each remaining ORF. ORFs that did 
not end in stop codon sequences (‘TGA’, ‘TAA’ and ‘TAG’) were elimi
nated. Using the R library micropan version 2.1, DNA sequences for each 
complete ORF were translated into protein sequences. Of note, ORFs 
with start codons ‘GTG’ or ‘TTG’ are translated with a methionine as 
the initial amino acid despite these sequences not typically encoding 
methionine in other positions in a proteincoding DNA sequence, per 
existing literature on noncanonical start codon usage in translation. 
Finally, all remaining ORF information was collapsed into one table, 
and duplicate ORFs, defined as ORFs in the same genomic position 
with identical protein sequences, were eliminated. When eliminating 
duplicates, ORFs identified of the most common ORF type identified 
by RibORF were conserved, according to the following order of prior
ity, from highest to lowest: canonical, truncation, extension, overlap, 
uORF, internal, external, polycistronic, readthrough and noncoding 
ORFs. ORFs annotated as type ‘seqerror’ were eliminated. After com
bining ORF outputs from all samples, ORFs that were detected in only 
one sample were eliminated. After the removal of singleton ORFs, 
duplicate ORFs were once again eliminated according to the same 
priority scheme, leaving only one entry for each ORF that was detected 
in at least two samples in the dataset. Importantly, the large number 
of unique protein sequences in the unannotated protein dataset does 
not reflect a large number of unique genes; rather, these represent 
alternative coding regions and/or isoforms of genes. The lncRNAKB 
annotation was used to assign a specific ORF type to each ORF. To be 
designated a sORF, an ORF had to be 100 aa or less in length and not 
fully overlap inframe with a canonical proteincoding ORF.

Single-cell deconvolution from bulk RNA-seq data
The SCDC R package (version 0.0.0.9000)61 was used to approxi
mate the distribution of cell types in our human postmortem tissue 
samples, using singlecell RNAseq data from phenotypically normal 
human dorsolateral prefrontal cortex samples62 as a cell type refer
ence. Raw counts data from control samples in the reference dataset 
were normalized, and the distribution of cell types present in each of 
the human postmortem tissue samples in this study were determined 
using SCDC. Cell types not represented in any sample were removed 
from the singlecell reference dataset, and then the cell type distribu
tion was rerun using SCDC.

Differential expression and Gene Ontology enrichment analysis
RNAseq gene expression was quantified as described above, and lowly 
expressed genes were filtered for counts per million >1 in at least two 
samples using edgeR (version 3.26.8). Riboseq expression was quan
tified by counting the number of Psites over a given ORF. To identify 
differences in transcription and translation between adult and prenatal 
human brain, twoway differential expression analysis was performed 
using deltaTE17 in R version 4.0.1. Read normalization and size factor 
estimation were performed on RNAseq and Riboseq data simultane
ously; samples were corrected for batch effects; and ORF types were 
subsetted for display purposes. Gene Ontology (GO) enrichment analy
sis was performed using gProfiler2 in R (version 0.2.0), with a custom 
background of expressed genes based on expressionfiltered RNAseq 
genes and false discovery rate (FDR) < 0.05.

ORF validation in NGN2 neurons with harringtonine-treated 
Ribo-Seq
Paired harringtoninetreated and vehicletreated RiboSeq BAM files 
were analyzed using RiboTISH (https://github.com/zhpn1024/ribot
ish)31. ORFs were identified using a negative binomial model to fit 
background from harringtoninetreated samples, followed by test
ing significance of translation initiation sites. ORFs were filtered for 
FDR qvalue < 0.05, and ORFs detected by RibORF were considered 

https://github.com/zhpn1024/ribotish
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validated if the start codon of the ORF called by ORFRATER and RibORF 
perfectly matched.

Paired harringtoninetreated and vehicletreated Riboseq BAM 
files were analyzed using ORFRATER (https://github.com/alexfields/
ORFRATER)63. ORFs were filtered for an orfrating >0, and ORFs 
detected by RibORF were considered validated if the start codon of 
the ORF called by ORFRATER and RibORF perfectly matched.

uORF/canonical ORF correlation analysis
For each mRNA transcript detected in each individual human brain 
sample, uORF sequences identified by RibORF were joined to pro
duce one singular samplespecific uORF region. For each of the uORF 
regions, raw counts were generated by quantifying total Psites across 
each region, from which transcripts per million reads (TPMs) were 
calculated. These TPMs were compared to canonical ORF transla
tional efficiency values to characterize the relationship between uORF 
utilization and canonical ORF translational dynamics at the level of 
individual genes.

Protein sequence analysis by liquid chromatography with 
tandem mass spectrometry
Sizeselected proteomics of the human adult and prenatal brain, as well 
as hESCderived neurons, was performed at the Taplin Biological Mass 
Spectrometry Facility at Harvard Medical School. Excised gel bands were 
cut into approximately 1mm3 pieces. Gel pieces were then subjected to 
a modified ingel trypsin digestion procedure. Gel pieces were washed 
and dehydrated with acetonitrile for 10 minutes, followed by removal of 
acetonitrile. Pieces were then completely dried in a speedvac. Rehydra
tion of the gel pieces was with 50 mM ammonium bicarbonate solution 
containing 12.5 ng µl−1 of modified sequencinggrade trypsin (Promega) 
at 4 °C. After 45 minutes, the excess trypsin solution was removed and 
replaced with 50 mM ammonium bicarbonate solution to just cover the 
gel pieces. Samples were then placed in a 37 °C room overnight. Peptides 
were later extracted by removing the ammonium bicarbonate solution, 
followed by one wash with a solution containing 50% acetonitrile and 1% 
formic acid. The extracts were then dried in a speedvac (~1 hour). The 
samples were stored at 4 °C until analysis.

On the day of analysis, samples were reconstituted in 5–10 µl of 
HPLC solvent A (2.5% acetonitrile and 0.1% formic acid). A nanoscale 
reversephase HPLC capillary column was created by packing 2.6 µm 
of C18 spherical silica beads into a fused silica capillary (100µm inner 
diameter × ~30cm length) with a flamedrawn tip. After equilibrating 
the column, each sample was loaded via a Famos auto sampler (LC 
Packings) onto the column. A gradient was formed, and peptides were 
eluted with increasing concentrations of solvent B (97.5% acetonitrile 
and 0.1% formic acid).

As peptides eluted, they were subjected to electrospray ionization 
and then entered into an LTQ Orbitrap Velos Pro iontrap mass spec
trometer (Thermo Fisher Scientific). Peptides were detected, isolated 
and fragmented to produce a tandem mass spectrum of specific frag
ment ions for each peptide.

Mass spectrometry analysis
Thermo Fisher raw files were loaded into MaxQuant version 1.6.17.0 
for the peptide search. Each file corresponded to one brain sample and 
was labeled as its own experiment in the search. Default parameters, 
including specific trypsin digestion, methionine oxidation and protein 
Nterminal acetyl variable modifications and carbamidomethylfixed 
modifications, were used. We uploaded a custom protein FASTA file 
for our search using the protein sequence identified in our RibORF 
postprocessing. For adult brain mass spectrometry, we used a protein 
FASTA file containing only sequences from adult samples that passed 
our quality control metrics and the same for prenatal brain mass spec
trometry. The size of each search database was as follows: adult brain 
– 53,326 ORFs; prenatal brain – 98,410 ORFs; NGN2 neurons – 84,450 

ORFs. In each case, ‘truncation’ type ORFs were excluded because of 
their redundancy to canonical protein sequences. The protein search 
in MaxQuant was run using an Amazon Web Services client to optimize 
speed and efficiency. A default twolevel FDR control was used: peptide 
level and protein group level, both with a 1% FDR threshold. A posterior 
error probability calculation was performed based on a targetdecoy 
search. Common mass spectrometry contaminants were filtered out. 
Only peptides with a score >50 were considered for subsequent analysis.

Physiochemical analysis
sORFs were searched using Blastp (version 2.6.0, evalue 0.0001, word_
size 4) against a database of all protein translations from GENCODE v29 
(https://www.gencodegenes.org/human/release_29.html; downloaded 
on 2 August 2019). GO terms enriched in known proteins with significant 
sequence similarity to sORFs were determined using GORilla64 and plot
ted using GraphPad Prism version 8 software. Locations of significant 
hits were then compared to PFam annotations (from Ensembl, accessed 
through Ensembl API), and any sORF with at least one residue overlap 
was considered overlapping. Although we allowed any degree of over
lap, we found that many of the sORFs had nearcomplete overlap with 
PFam domains (Extended Data Fig. 7b). FoldIndex score47 is defined 
as 2.785 × hydropathy  abs(net charge) −1.151. Physicochemical and 
sequence properties of sORFs and intrinsically disordered regions 
(IDRs) were computed using custom Python codes (https://github.com/
IPritisanac/idr.mol.feats). All analyses of sORFs, IDRs and reference pro
teins were performed on protein sequences between 21 aa and 100 aa. 
In total, 27,110 sORFs, 19,652 IDRs and 908 UniProt human reference 
proteins met this criterion. Normalization, filtering and clustering of 
sequence properties was performed using Cluster3.0 (ref. 65) with the 
following parameters: median centering of columns; normalization 
of columns; retaining sequences with at least three observations with 
absolute value >0.01 and weighting columns using default options; and 
clustering using average linkage hierarchical clustering. This process 
left 16,905 sequences in the cluster analysis, of which 6,910 were IDRs 
and 10,095 (59%) were sORFs. Clusters were visualized and selected 
manually using Treeview version 1.1.6r4 (ref. 66), and enrichment analysis 
was performed by selecting the IDRs from each cluster and using the 
6,910 IDRs in the entire cluster analysis as the background set. These lists 
were entered into the GOrilla webserver64. The enrichment or depletion 
of sORFs in each cluster was computed by comparing the ratio of sORFs 
in each cluster to the expected ratio of 10,095/6,910.

Phylostratigraphy analysis
All ORFs with an amino acid length of ≥40 aa were analyzed using Time
Tree67 to identify the minimal evolutionary age for every proteincoding 
gene. The evaluation is based on sequence similarity scored with Blastp 
and identifying the most distant sequence in which a sufficiently simi
lar sequence appears. Each protein sequence was used to query the 
nonredundant (nr) National Center of Biotechnology Information 
(NCBI) database with a Blastp Evalue threshold of 10−3 and a maximum 
number of 200,000 hits. We identified the phylostratum in which 
each ORF appeared. Each phylostratum corresponds to an evolution
ary node in the lineage of the species, as listed in the NCBI Taxonomy 
database. For clarity, we aggregated results into the following evolu
tionary eras: Ancient (phylostrata 1–7, from cellular organisms through 
Deuterostomia (290–747 millions of years ago (Mya))), Chordates 
(phylostrata 8–17, from Chordata through Amniota (747–320 Mya)), 
Mammals (phylostrata 18–22, from Mammalia through Euarchon
toglires (320–91 Mya)), Primates (phylostrata 23–29, from Primates 
through Homininae (91–6.6 Mya)) and Humans (phylostrata 30–31, 
including H. sapiens, 6.6 Mya to present).

Transposable element insertion at start codons
To identify ORFs whose start codons derive from transposable ele
ments, we intersected our ORF start codons with a TE annotation kindly 
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provided by the laboratory of Didier Trono68. First, we created a list of all 
start codons in different categories (proteincoding, noncoding RNA, 
uORF, sORF and pseudogene) by collapsing all ORFs that share a start 
position. We extended this start codon position to a 10bp window and 
intersected this with a BED file of all TEs in the human genome using 
bedtools. For any ORF start codon that overlapped a TE, we used a table 
of TE subfamily ages from Dfam to estimate the oldest possible lineage 
in which that TE may exist in the human genome36,69.

Microprotein overexpression and western blot
To test the translatability of sORFs, doublestrand DNA sequences con
taining the sORF endogenous pseudo 5′ UTR (defined as the upstream 
DNA sequence from the sORF start codon), sORF protein sequence 
and a FLAGHA tag inframe with the sORF protein sequence were 
synthesized by GenScript and cloned into an FUGW overexpression 
vector (Addgene, 14883). A negative control construct in which the 
start codon was mutated to an ATT was generated using a QuikChange 
II Sitedirected mutagenesis kit (Agilent, 200521). The wildtype and 
mutant plasmids were verified by Sanger sequencing. The designed 
sequences used in this study are listed in Supplementary Table 6.

Both wildtype and mutant plasmids were transfected into 
lentiX293T cells (Takara Bio) using Lipofectamine 3000 reagent (Inv
itrogen). After 24 hours, cells were harvested and resuspended in RIPA 
buffer (SigmaAldrich) supplemented with protease inhibitor cocktail 
(Roche). Protein concentration was measured by Bradford assay, and 
20 µg of protein lysate was denatured at 95 °C for 5 minutes and then 
separated on a 10–20% Tristricine gel (Invitrogen) at 125 V for 90 min
utes. Proteins were transferred to a nitrocellulose membrane (BioRad) 
at 115 V for 90 minutes, and the membrane was blocked with 5% nonfat 
dry milk in TBST for 1 hour. Membranes were incubated with antiHA 
(C29F4) (1:1,000, CST) or antiGAPDH (1:1,000, SigmaAldrich) primary 
antibody in 5% nonfat dry milk in TBST overnight at 4 °C. Membranes 
were washed 4× in TBST at room temperature and then incubated with 
secondary antibodies conjugated to IRdye 800 (1:10,000) and imaged 
with LiCOR Odyssey.

Immunofluorescence
HEK293T cells were grown on glass slides for 24 hours and transfected 
as described above. Cells were fixed with 4% paraformaldehyde for 
30 minutes at room temperature and washed three times with icecold 
PBS. The cells were permeabilized and blocked for 1 hour at room tem
perature using 5% donkey serum in PBST (1× PBS and 0.1% Triton X100). 
Coverslips were incubated with antiFLAG mouse primary antibody 
(1:1,000) (SigmaAldrich) overnight at 4 °C. Coverslips were washed 
3× in PBST at room temperature and then incubated with fluorescently 
labeled secondary antibody (1:2,000, Alexa Fluor 488 antimouse) 
for 1 hour at room temperature. Coverslips were washed 3× in PBST 
at room temperature and mounted onto Superfrost glass slides using 
DAPI FluoromountG (Thermo Fisher Scientific). Images were visual
ized using a Leica SP8 confocal microscope using a ×63 objective and 
analyzed using ImageJ software (version 2.1.0).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Data reprocessed from Wang et al.70 were accessed from ArrayEx
press with accession number EMTAB7247. Human brain primary 
tissue RNAseq and Riboseq data have been submitted to the data
base of Genotypes and Phenotypes (dbGaP) under accession number 
phs002489. NGN2 RNAseq and Riboseq data have been submitted to 
the Gene Expression Omnibus under accession number GSE180240. 
The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE partner repository with 

the dataset identifier PXD035950. Our webbased searchable data
base is available from https://greenberg.hms.harvard.edu/project/
humanbrainorfdatabase/. Source data are provided with this paper.

Code availability
Custom Python code for physicochemical analysis is available at 
https://github.com/IPritisanac/idr.mol.feats. All other code used in 
this study was previously published and is cited in the Methods section.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Ribosome profiling captures active translation in the 
human adult and prenatal brain, Related to Fig. 1. (a) Pie chart displaying 
the fraction of raw sequence reads derived from tRNA, ribosomal RNA (rRNA), 
mitochondrial RNA (mtRNA), and remaining aligned reads (clean) from human 
adult and prenatal brain RNAseq and Riboseq. (b) Beeswarm plot of sequenced 
ribosome footprint lengths across all 73 adult and prenatal brain samples. Red 
line indicates the average percentage of Riboseq reads assigned to a given read 
length across all samples. (c) Bar plot of the percentage of reads mapping to the 
coding sequence (CDS) and untranslated regions (5′ and 3′ UTR) of annotated 
proteincoding genes (Refseq hg38). Each bar represents an individual sample. 
(d) Bar plot of the number of ORFs identified by RibORF in each sample after 
filtering (see Methods). Notably, we identify many more ORFs in the prenatal 
brain compared to the adult brain, which is likely at least in part a result of the 
longer postmortem interval in adult compared to prenatal samples. (e) Pie 
chart of ORF types detected in our study as well as four previous studies4,11–13. 
Because each study defines ORF types differently, ORFs are in hues denoting 
similar ORF types. Blue = CDS ORFs including noncanonical, outofframe ORFs; 
pink = uORFs and overlapping uORFs; orange = dORFs; yellow = ORFs translated 
from previously annotated noncoding RNAs. (fg) PCA analysis of all genes in 

the human brain (f ) RNAseq and (g) Riboseq, colored by sample type (adult 
vs prenatal), postmortem interval for adult samples, adult age, prenatal age 
(pcw), sex, and read depth (based on DESeq2 scale factors of estimated library 
size). The validity of combining samples into two groups in subsequent analyses 
was confirmed by the finding that these two groups were well separated by PCA 
analysis for both the transcriptome and translatome. (h) PCA analysis of batches 
of samples processed for RNAseq (left) and Riboseq (right) to test for batch 
effect. We note a mild batch effect in some cases. To address the remaining batch 
effects in our differential expression analysis, we employed DTEG, an algorithm 
that uses DESeq2 to normalize across samples and includes batch correction. 
(i) Linear regression between postmortem tissue RNA integrity number (RIN) 
and read depth for RNAseq and Riboseq. There is no significant correlation 
between the two variables (twosided significance test for linear regression, 
p > 0.05 for RNAseq and Riboseq). Gray shading = 95% CI. ( j) Stacked bar plot 
of ORF types distributed by translation probability value, as calculated by 
RibORF. While RibORF uses a translation probability cutoff of 0.7 to determine 
significantly translated ORFs, we detect novel ORFs with a large range of 
translation probabilities.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Transcriptional and translational regulation 
across human brain development, Related to Fig. 2. While the translatome 
has not been previously characterized in the developing human brain, our 
measurements of the transcriptome are consistent with published gene 
expression data from the BrainSpan Atlas of the Developing Human Brain15. 
(a) Bulk gene expression deconvolution of adult and prenatal brain RNAseq 
using multiple singlecell RNA sequencing references (SCDC)61. Differences 
in cell type composition are not statistically significant by twoway ANOVA 
(Fstatistic = 0, Pvalue = 1), strongly suggesting that observed differences in 
transcription and translation between prenatal and adult brain samples are 
not driven by differences in cell type composition. Data are shown as median ± 
IQR (whiskers = 1.5*IQR), notches indicate median + /−1.58*IQR/sqrt(n), n = 43 
(adult) and 30 (prenatal) biologically independent tissues. (b) We sought to 
benchmark the Riboseq data in human postmortem brain tissue in this study 
to a recently published dataset of Riboseq in the human cerebellum70. PCA 
analysis of human prenatal and adult Riboseq (this study), as well as Riboseq 
of human adult cerebellum from Wang et al70. (c) Diagram of overlapping ORFs 
identified from human prenatal and adult Riboseq (this study), as well as Ribo
seq of human adult cerebellum from Wang et al70. Overall, we found a similar 
level of overlap between the Wang data and our human brain tissue samples as 
we found with our human NGN2 neuron samples. We do not find this limited 
overlap surprising, however, given that the Wang data is from adult cerebellum 
whereas we sample dorsolateral prefrontal cortex across a variety of ages. (d) 
Dot plot of the top enriched GO terms in each regulatory category defined in Fig. 
2B. (e) Heatmap of RNAseq expression (rownormalized) for all ribosomal genes 
in Fig. 2D across all human adult and prenatal samples in this study (left) and in 

the dorsolateral prefrontal cortex from the BrainSpan Atlas of the Developing 
Human Brain15. (f ) Genomic locus of SUPT5H, a transcript regulated only at the 
level of translation, and (g) CNTNAP1, a transcript regulated only at the level of 
transcription. Tracks represent merged and depthnormalized reads across all 
adult vs. prenatal samples for RNAseq, Riboseq, as well as Psite positions. Box 
and whisker plots indicate DESeq2normalized RNAseq reads and Riboseq 
Psites in adult vs. prenatal samples. (f ) **** = Riboseq padj = 2.26*10−4 by DESeq2. 
(g) **** = RNAseq padj = 3.74*10−12 by DESeq2; **** = Riboseq padj = 1.35*10−6 by 
DESeq2. (fg) Data are shown as median ± IQR (whiskers = 1.5*IQR), n = 43 (adult) 
and 30 (prenatal) biologically independent tissues. (h) Box and whisker plots 
of DESeq2normalized RNAseq reads across human brain samples divided 
into five age categories (prenatal = 1218 pcw and 1924 pcw, adult = 2039 yrs, 
4059 yrs, >60 yrs) for CNTNAP1 (top), a transcriptionally regulated gene, and 
SUPT5H (bottom), a translationally regulated gene. (i) Box and whisker plots of 
DESeq2normalized Riboseq reads across human brain samples divided into 
five age categories (prenatal = 1218 pcw (n = 8 biologically independent tissues) 
and 1924 pcw (n = 22 biologically independent tissues), adult = 1839 yrs (n = 18 
biologically independent tissues), 4059 yrs (n = 23 biologically independent 
tissues), >60 yrs (n = 2 biologically independent tissues)) for CNTNAP1 (left) and 
SUPT5H (right). (h–i) Data are shown as median ± IQR (whiskers = 1.5*IQR). ( j) Line 
plot of RPKM values from the BrainSpan Atlas of the Developing Human Brain 
for CNTNAP1 (top) and SUPT5H (bottom) across development in the dorsolateral 
prefrontal cortex. Data are shown as mean ± SD, n = 1 (8, 9, 17, 19, 21, 24, 26 & 37 
pcw; 0.83, 1, 2, 33, 4, 11, 13, 18, 19, 21, 30, 36, 37, 40 yrs), 2 (0.33, 8 yrs), 3 (12, 13, 16 
pcw) biologically independent tissues.
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Extended Data Fig. 3 | Microprotein expression and validation across brain 
development, Related to Fig. 3. (a) Violin plot of average ribosome density 
(RD) by ORF type. Previously described ORFs are shown in red. Average ribosome 
density is shown in blue. (b) Venn diagram of sORFs detected in human brain 
(this study), human heart (van Heesch et al.4), or the sORF.org database. In total, 
6,071 translated sORFs identified in the human brain perfectly matched the 
amino acid sequence of a previously reported entry in the sORFs.org database 
or identified in the human heart, a degree of overlap consistent with prior 
studies4. (c) Out of 8,590 lincRNA genes expressed across all brain samples, 
415 lincRNA genes encode at least one translated ORF. We examined possible 
differences between ORFencoding lincRNAs and nontranslated lincRNAs. Box 
and whisker plots of annotated lincRNA features (expression, length, RPKM, 
and conservation) comparing RNAs that contain at least one ORF in the human 
brain to lincRNAs that do not contain any ORFs, data are shown as median ± 
IQR (whiskers = 1.5*IQR), n = 8,175 (no ORF detected) and 415 (ORF detected) 
lincRNAs. ** p = 0.009079 by twosided Welch twosample Ttest, n.s. = not 
significant. (d) Number and type of ORFs identified by sizeselection proteomics 

in the adult and prenatal brain, or by Johnson et al.25. (e) Histograms of number of 
proteins identified by sizeselection proteomics in the adult and prenatal brain, 
or by Johnson et al.25., binned by protein length. (f ) Box and whisker plots of 
Riboseq TPM for all ORFs detected by MS and ORFs not detected, data are shown 
as median ± IQR (whiskers = 1.5*IQR), n = 352 (adult, Johnson et al.), 3331 (adult, 
this study), 419 (prenatal, this study), 168,085 (not detected by MS). (g) Box and 
whisker plots of Riboseq TPM for sORFs detected by MS and ORFs not detected. 
(fg) data are shown as median ± IQR (whiskers = 1.5*IQR), n = 14 (adult, Johnson 
et al.), 17 (adult, this study), 31 (prenatal, this study), 16838,125085 (not detected 
by MS). *** p = 2.92*10−5, **** p < 2.2*10−16, by twosided Kolmogorov–Smirnov 
test. While only a fraction of the sORFs identified by ribosome profiling were 
detected by our mass spectrometry analysis, this is not surprising given that 
such shotgun proteomic approaches have low sensitivity for the detection of 
individual proteins, particularly if the proteins are transient or low in abundance. 
Consistent with this finding, the sORFencoded proteins that we were able to 
detect by proteomics exhibited a higher average ribosome density compared to 
all sORFs detected by ribosome profiling.
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Extended Data Fig. 4 | Activity-dependent translation in hESC-derived 
neurons, Related to Fig. 4. (a) Heatmap of RNAseq TPM from hESCderived 
neuronal cultures for marker genes associated with neuronal and nonneuronal 
cell types. Rows indicate individual samples and biological replicates. The 
pattern of gene expression observed in these cultures largely mimics the findings 
in Nehme et al.29. (b) Heatmap of pairwise Spearman’s r correlation between the 
top 2,000 expressed genes in RNAseq samples from NGN2derived neurons, 
including cells that were treated with cycloheximide alone (no treatment), 
harringtonine, or a vehicle control (DMSO). (c) Heatmap of pairwise Spearman’s 
r correlation between the top 2,000 expressed genes in Riboseq samples from 
NGN2derived neurons, including cells that were treated with cycloheximide 
alone (no treatment), harringtonine, or a vehicle control (DMSO). (d) Bar chart 
of normalized RNAseq and Riboseq reads mapping to FOS, a classic activity
induced gene in neurons, and XIRP1, an activityinduced gene that was previously 
reported in human GABAergic neuron cultures71. Data are shown as mean ± SD, 
n = 3 independent cell differentiations. (e) Bar plot of ORF types detected by 
Riboseq in NGN2 neurons, separated based on whether or not the exact ORF 
was also detected in postmortem adult or prenatal brain tissue. Most canonical 
ORFs detected in NGN2 neurons are also detected in human postmortem brain 
tissue. Likewise, we detect substantial, albeit somewhat lower, overlap for a range 
of noncanonical ORFs across both sample types as well. We are not surprised 
at the extent of the overlap between these datasets, as NGN2 neuronal cultures 
largely mimic embryonic cortical excitatory neurons; while cortical excitatory 
neurons represent a major constituent cell type in the dorsolateral prefrontal 
cortex, many other cell types exist in this tissue, and a number of the candidate 
sORFs/noncanonical ORFs (for example PLN, SLN, DWORF) and ncRNAs exhibit 
cell type specificity in the RNAs from which they are translated. Therefore, it is 
expected that we would not detect all of the same ORFs between NGN2 neurons 
and human postmortem tissue. (f ) Importantly, the nature of the overlapping 
ORF population does not simply reflect the likelihood of ORF detection in brain 
samples. In this regard, we categorized ORFs detected in adult and/or prenatal 
postmortem tissue based on the number of samples in which the identical ORF 
was detected, and binned ORFs in each category by whether they were also 
detected in NGN2 neurons. Stacked bar chart of ORF types detected by Riboseq 
in human postmortem tissue, separated based on the number of tissue samples 

in which a given ORF was detected (2, 35, 610, 1120, 2150, 5073) and whether 
the ORF was also detected in NGN2 neurons. This analysis did not find a notable 
difference in the proportion of canonical or various noncanonical ORFs based 
on whether they were detected in NGN2 neurons. (g) Stacked bar plot of start 
codon usage by ORF type in NGN2 neurons. (h) Metagene plot of Riboseq Psites 
across the gene body of annotated Refseq ORFs in 3 independent replicates of 
harringtoninetreated (+ Harr) NGN2 neurons or vehicletreated controls ( Harr). 
The enrichment for Psites near start codons in + Harr samples is a hallmark of 
translational stalling induced by harringtonine treatment. (i) Number of ORFs 
in which the start codon was confirmed in harringtoninetreated NGN2treated 
neurons. Two independent computational pipelines were used, ORFRATER60 
and RiboTISH31. While ORFRATER validates fewer ORFs compared to RiboTISH, 
this result is expected as ORFRATER utilizes a different, more stringent filtering 
process, consistent with our finding that nearly all ORFs validated by ORFRATER 
are also validated by RiboTISH. A full list of ORFs validated by ORFRATER and 
RiboTISH can be found in Supplementary Table 3. ( j&k) Activitydependent 
changes in ORF translation were largely driven by transcriptional changes rather 
than a shift in ribosome density for both canonical ORFs and sORFs. This finding 
is consistent with observations that activitydependent translation events 
coupled to transcription are transient and likely return to basal levels within six 
hours of membrane depolarization. ( j) Scatterplot of foldchanges between 
stimulated and unstimulated neurons for all canonical ORFs in Riboseq data 
and the corresponding gene in RNAseq data. Transcriptionally regulated genes 
(blue), translationally regulated genes (red), buffered genes (light purple), and 
intensified genes (dark purple) are highlighted. (k) Scatterplot of foldchanges 
between stimulated and unstimulated neurons for all sORFs in Riboseq data 
and the corresponding gene in RNAseq data. Transcriptionally regulated genes 
(blue), translationally regulated genes (red), buffered genes (light purple), 
and intensified genes (dark purple) are highlighted. (l&m) Genomic loci of 
two activitydependent ncRNAs with evidence of translation, MIR22HG (l) and 
LOC107986102 (m). Tracks represent merged and depthnormalized reads across 
3 biological replicates of membranedepolarized (6 h KCl) and unstimulated 
neurons for RNAseq, Riboseq, as well as Psite positions for Riboseq and 
harringtoninetreated Riboseq. sORFs identified by RibORF are shown in gold.
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Extended Data Fig. 5 | Evolutionary origins of human brain sORFs, 
Related to Fig. 5. (a) Bar plot of the number of sORFs (40110 AA) grouped by 
evolutionary age. (b) Bar plot of the number of sORFs (40100 AA) detected 
by mass spectrometry (See Fig. 3d) grouped by evolutionary age. We detected 
many evolutionarily conserved ORFs that were previously detected in other 
species. For example, uORFs translated from the 5′UTRs of FTH1 and CCNi show 
conservation within the mammalian lineage by phylostratigraphy and show 

experimental evidence of translation in rodents4,36. (c) Number and percentage 
of sORFs ≥40 AA that are translated from brainenriched transcripts, grouped 
by evolutionary age. (d) Criteria for filtering TE insertion events at start codons 
(left) and pie chart of TE type for all ORFs in our dataset with a TE insertion at the 
start codon. (e) Histogram of ORF length for all ORFs encoded within ncRNAs, 
pseudogenes, and uORFs. Most ORFs encoded by ncRNAs, pseudogenes, and 
uORFs are sORFs.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Effects of uORF expression on downstream ORF 
translation, Related to Fig. 6. (a) Scatterplot of foldchanges in translation 
between adult and prenatal brain for sORFs and canonical ORFs expressed from 
the same transcript. Positive values indicate enrichment in the adult brain, 
whereas negative values indicate enrichment in the prenatal brain. Red points 
indicate genes where sORF translation is significantly (DESeq2 padj < 0.05) 
enriched in prenatal brain while canonical ORF translation is significantly 
(DESeq2 padj < 0.05) enriched in adult brain. Blue points indicate genes where 
sORF translation is significantly (DESeq2 padj < 0.05) enriched in adult brain 
while canonical ORF translation is significantly (DESeq2 padj < 0.05) enriched in 
prenatal brain. While most sORFs exhibited concordant translation with their 
associated canonical ORFs across development, we identified 50 sORFs that 
were discordant with nearby canonical ORF translation, and these discordant 
sORFs were strongly enriched for uORFs translated from 5′UTRs of annotated 
proteincoding genes. (b) Stacked bar plot of numbers and percentages of sORFs 

detected in human brain (all sORFs), or sORFs exhibiting oppositely regulated 
expression across development compared to a canonical ORF translated from the 
same gene, separated by sORF type. (c) Scatterplot of foldchanges in translation 
between adult and prenatal brain for sORFs and canonical ORFs expressed 
from the same transcript, separated by type of ORF. Positive values indicate 
enrichment in the adult brain, whereas negative values indicate enrichment 
in the prenatal brain. Red points indicate genes where sORF translation is 
significantly (DESeq2 padj < 0.05) enriched in prenatal brain whereas canonical 
ORF translation is significantly (DESeq2 padj < 0.05) enriched in adult brain. Blue 
points indicate genes where sORF translation is significantly (DESeq2 padj < 0.05) 
enriched in adult brain whereas canonical ORF translation is significantly 
(DESeq2 padj < 0.05) enriched in prenatal brain. (d) Genomic locus of DLGAP1. 
Tracks represent merged and depthnormalized reads across all adult vs. prenatal 
samples for RNAseq, Riboseq, as well as Psite positions. The sORF identified by 
RibORF is shown in gold.
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Extended Data Fig. 7 | Microprotein functional characterization, Related 
to Fig. 7. (a) Protein functions of known genes that share homology with sORFs. 
(b) Characterization of sORFs that overlap with a domain in the PFam database. 
(c) Line plot of sequence complexity in the known human proteome (Known 
Uniprot), the disordered proteome (Known IDRs), and sORFs detected in human 
postmortem tissue that do not share homology with known protein domains. (d) 
Line plot of the log2 ratio of arginine to lysine in the categories of ORFs described 
in c. (e) Line plot of the proportion of aromatic amino acids (phenylalanine, 

tyrosine, and tryptophan) in the categories of ORFs described in c. (f ) Line plot 
of the isoelectric point for the categories of ORFs described in c. (g) Heatmap 
and hierarchical clustering of zscores for 109 sequence and physicochemical 
features associated with the known disordered proteome as well as all sORFs that 
do not contain a BlastP hit and do not overlap with annotated ORFs. Boxes to the 
right of the heatmap indicate clusters of IDRs with similar properties. Yellow = 
clusters significantly enriched for sORFs.
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